Test and Measurement
Division

## Service Manual Instrument

## SPECTRUM ANALYZER

R\&S FSP3

1093.4495.03

R\&S FSP7
1093.4495.07

R\&S FSP13
1093.4495.13

R\&S FSP30
1093.4495.30/.39

R\&S FSP40
1093.4495.40

## Tabbed Divider Overview

Index
Safety Instructions
Certificate of Quality
Spare Parts Express ServiceList of R\&S Representatives
Contents of Manuals for Spectrum Analyzer FSP
Service and Repair
Tabbed Divider
1 Chapter 1: Performance Test
2 Chapter 2: Adjustment
3 Chapter 3: Repair
4 Chapter 4: Firmware Update / Installation of Options
5 Chapter 5: Documents

## Index

A
Adjustment ..... 2.1
frequency accuracy ..... 2.6
Frequency response correction .....  2.8
functions. ..... 2.2
level accuracy .....  2.4
level of the calibration signal. ..... 2.2
manual ..... 2.3
Measuring equipment and Accessories ..... 2.3
module data ..... 2.8
reference frequency. ..... 2.2
Audio demodulator
function. .....  3.8
replacement. ..... 3.38

## B

Bandwidth
Check...................................................................... 1.9
check level accuracy ................................................ 1.8
Battery
$\qquad$Block circuit
description ..... 3.1
diagram
Boot-Problems
Troubleshooting. ..... 3.47
DDetector
error message ..... 3.52
function .....  3.7
replacement. ..... 3.35
Display Linearity
Check ..... 1.14
Documents ..... 5.1

## E

Electronic Attenuator
Check..................................................................... 1.33
function.....................................................................3.2
replacement...........................................................3.43
Error message
DETECTOR Access failed!.......................................3.52
LOUNL ....................................................................3.66
External Generator Control
replacement.3.41

## F

Fan
replacement. ..... 3.27
FFT bandwith
check. ..... 1.8
function.. ..... 3.8
Firmware update. ..... 4.1
Floppy disk drive ..... 3.25
Frequency accuracy
adjustment. ..... 2.6
Check ..... 1.3
Frequency response
Check ..... 111
correction. ..... 2.8
Front module controller
function. ..... 3.9
replacement .....  13
Front panel ..... 3.9
Frontend
function ..... 3.3
replacement ..... 3.34
Troubleshooting ..... 3.66
Function description ..... 3.1
H
Harddisk
replacement ..... 3.19
I
IF Filter
function. ..... 3.5
replacement ..... 3.36
IF Gain
Check ..... 1.16
function. ..... 3.5
IF image frequency rejection
Check ..... 1.4
function. ..... 3.3
IF rejection check. ..... 1.5
Imunity to interference Check ..... 1.3
Instrument design ..... 3.1
K
Key/Probe
function ..... 3.10
replacement ..... 3.32 ..... 3.32
Keyboard ..... 3.9
replacement ..... 3.22
LLAN-Interface
replacement ..... 3.42
LC-Display ..... 3.9
replacement ..... 3.20
Level accuracy ..... 2.4
Check ..... 1.11
Lithium battery
replacement ..... 3.16
M
Manuel adjustment ..... 2.3
Measuring equipment adjustment ..... 2.3
Performance Test ..... 1.1
troubleshooting ..... 3.45
Mechanical Drawings ..... 5.11
Microwave converter
function. ..... 3.4
replacement. ..... 3.37
Module replacement ..... 3.11
AF-Demodulator ..... 3.38
Battery. ..... 3.16
DC/AC-Converter ..... 3.20
Detectorboard A120 ..... 3.35
Electronic Attenuator ..... 3.43
External Generator Control ..... 3.41
Fan ..... 3.27
Floppy disk drive ..... 3.25
Front module controller A90 ..... 3.13
Harddisk ..... 3.19
IF-Filter A130 ..... 3.36
Key/Probe ..... 3.32
Keyboard ..... 3.22
Labeling panel ..... 3.24
LAN-Interface ..... 3.42
LC-Display ..... 3.20
Motherboard A10 ..... 3.29
MW Converter Unit A160 ..... 3.37
OCXO ..... 3.39
Power supply ..... 3.26
RF Attenuator ..... 3.31
RF Frontend ..... 3.34
RF input connector (cable W1) ..... 3.28
Switching mat ..... 3.22
Switching membrane ..... 3.22
Tracking Generator ..... 3.40
Vol./Phone board. ..... 3.32
Modules overview ..... 3.12
Motherboard
function. ..... 3.10
replacement. ..... 3.29
N
Noise display Check. ..... 1.10
Nonlinearities
Check ..... 1.6
0

OCXO

    function.....................................................................3.6
    
    replacement............................................................3.39
    Option

    FSP-B10
    
        replacement ......................................................3.41
    
    FSP-B16
    
        replacement ....................................................... 3.42
    
    FSP-B25
    
        function ............................................................... 3.2
    
        replacement .................................................... 3.43
    
    FSP-B3
    
        function ...............................................................3.8
    
        replacement ......................................................3.38
    
    FSP-B4
    
        function ..............................................................3.6
    
        replacement .....................................................3.39
    
    FSP-B9
    
        replacement ..................................................... 3.40
    
    installation ................................................................4.2
    
    list.............................................................................4.2
    
## S

Second-order harmonic distortion
Check...............................................................7.7

Shape factor
Check...................................................................1.9
Shipping
Instrument .......................................................................... 5.1
Module ...................................................................................................1
Softkey
CAL SIGNAL POWER...........................................2.2
ENTER PASSWORD .............................................2.2
FIRMWARE UPDATE ............................................4.1
REF FREQUENCY....................................................2.2
RESTORE FIRMWARE.........................................4.1
SAVE CHANGES .................................................................... 2.2
SELFTEST RESULTS..........................................3.55
SERVICE .........................................................................................1.1
Software update ..............................................................4.1
Spare parts
electrical parts .....................................................5.11
list of all parts ........................................................5.4
Ordering ................................................................5.2
Refurbished Modules.............................................5.2
Switch-on problems .......................................................3. 36

## T

Third-Order Intercept
check.................................................................. 1.6
check (with Elec. Attenuator) ..........................................................................
Tracking Generator
replacement........................................................ 3.40
Troubleshooting ....................................................................................... 3.45
Frontend ............................................................. 3.66
loading module-EEPROMs .................................................................................
Local oscillator..................................................... 3.66
problems with boot process .....................................................................
Selftest .............................................................. 3.55
switch-on problems .............................................. 3.46

## V

Video bandwidth ......................................................... 3.8
Vol./Phones
function............................................................... 3.10


## Safety Instructions

This unit has been designed and tested in accordance with the EC Certificate of Conformity and has left the manufacturer's plant in a condition fully complying with safety standards.
To maintain this condition and to ensure safe operation, the user must observe all instructions and warnings given in this operating manual.

1. The unit may be used only in the operating conditions and positions specified by the manufacturer. Unless otherwise agreed, the following applies to R\&S products:
Pollution severity 2, overvoltage category 2, IP degree of protection 2 X , altitude max. 2000 m .
The unit may be operated only from supply networks fused with max. 16 A.
2. For measurements in circuits with voltages $\mathrm{V}_{\mathrm{rms}}$ $>30 \mathrm{~V}$, suitable measures should be taken to avoid any hazards.
(using, for example, appropriate measuring equipment, fusing, current limiting, electrical separation, insulation).
3. If the unit is to be permanently wired, the PE terminal of the unit must first be connected to the PE conductor on site before any other connections are made (installation and cabling of the unit to be performed only by qualified technical personnel).
4. For permanently installed units without built-in fuses, circuit breakers or similar protective devices, the supply circuit must be fused such as to provide suitable protection for the users and equipment.
5. Prior to switching on the unit, it must be ensured that the nominal voltage set on the unit matches the nominal voltage of the AC supply network.
If a different voltage is to be set, the power fuse of the unit may have to be changed accordingly.
6. Units of protection class I with disconnectible AC supply cable and appliance connector may be operated only from a power socket with earthing contact and with the PE conductor connected.
7. It is not permissible to interrupt the PE conductor intentionally, neither in the incoming cable nor on the unit itself as this may cause the unit to become electrically hazardous.

Any extension lines or multiple socket outlets used must be checked for compliance with relevant safety standards at regular intervals.
8. If the unit has no power switch for disconnection from the AC supply, the plug of the connecting cable is regarded as the disconnecting device. In such cases it must be ensured that the power plug is easily reachable and accessible at all times (length of connecting cable approx. 2 m ). Functional or electronic switches are not suitable for providing disconnection from the AC supply.
If units without power switches are integrated in racks or systems, a disconnecting device must be provided at system level.
9. Applicable local or national safety regulations and rules for the prevention of accidents must be observed in all work performed.
Prior to performing any work on the unit or opening the unit, the latter must be disconnected from the supply network.
Any adjustments, replacements of parts, maintenance or repair may be carried out only by authorized R\&S technical personnel.
Only original parts may be used for replacing parts relevant to safety (eg power switches, power transformers, fuses). A safety test must be performed after each replacement of parts relevant to safety.
(visual inspection, PE conductor test, insulationresistance, leakage-current measurement, functional test).
10. Ensure that the connections with information technology equipment comply with IEC950/EN60950.
11. Equipment returned or sent in for repair must be packed in the original packing or in packing with electrostatic protection.
12. Any additional safety instructions given in this manual are also to be observed.

Safety-related symbols used on equipment and documentation from R\&S:


## Safety Instructions

The instrument contains components which are hazardous to electrostatic exposure and which are marked by the following symbol:


- To avoid damage of electronic components, the operational site must be protected against electrostatic discharge (ESD).


The following two methods of ESD protection may be used together or separately:

- Wrist strap with cord to ground connection
- Conductive floor mat and heel strap combination

The batteries used in the instrument are high-power lithium cells with a life utility of approx. 5 years. If you do not handle them properly, there is a danger of explosion. Therefore, observe the following safety instructions:

- Avoid short-circuit and loading of the battery
- Do not expose lithium batteries to high temperature or fire.
- Do not open used batteries
- Keep batteries away from children.
- Replace battery only by R\&S type battery (R\&S ordering number 0565.1687.00)
- Make sure to connect the battery to the appropriate terminals when replacing
- Lithium batteries are suitable for environmentally-friendly disposal or specialized recycling. Dispose them into appropriate containers, only.

- Put the instrument on the front handles before loosing the rear feet and the tube to avoid damage of the instrument.
- When mounting the tube take care not to damage or pull off cables.


## Contents of Manuals for Spectrum Analyzer FSP

## Service Manual - Instrument

The service manual - instrument informs on how to check compliance with rated specifications, on instrument function, repair, troubleshooting and fault elimination. It contains all information required for repairing the FSP by the replacement of modules.

The service manual comprises four chapters and an annex (chapter 5) containing the FSP circuit documentation:

| Chapter 1 | provides all the information necessary to check FSP for compliance with rated <br> specifications. The required test equipment is included, too. |
| :--- | :--- |
| Chapter 2 | describes the manual adjustment of the calibration source and of the frequency <br> accuracy as well as the automatic adjustment of individual module data following <br> module replacement. |
| Chapter 3 | describes the design of FSP as well as simple measures for repair and fault <br> diagnosis, in particular, the replacement of modules. |
| Chapter 4 | contains information on the extension and modification of FSP by installing <br> instrument software and retrofitting options. |
| Chapter 5 | describes the shipping of the instrument and ordering of spare parts and contains <br> spare parts lists and exploded views of FSP. |

## Operating Manual

In the operating manual for FSP you will find information about the technical specifications of FSP, the controls and connectors on the front and rear panel, necessary steps for putting the instrument into operation, the basic operating concept, manual and remote control.

For introduction typical measurement tasks are explained in detail using the functions of the user interface and program examples.

The operating manual further provides hints on preventive maintenance and fault diagnosis by means of warnings and error messages output by the unit.

## Service and Repair

Please contact your Rohde \& Schwarz support center or our spare parts express service if you need service or repair of your equipment or to order spare parts and modules.
The list of the Rohde \& Schwarz representatives and the address of our spare parts express service are provided at the beginning of this service manual.
We require the following information in order to answer your inquiry fast and correctly and to decide whether the warranty still applies for your instrument:

- Instrument model
- Serial number
- Firmware version
- Detailed error description in case of repair
- Contact partner for checkbacks

Rohde \& Schwarz offers the following calibrations:

- Calibration on R\&S-type test systems. The calibration documentation meets the requirements of the quality management system ISO 9000.
- Calibration at an R\&S calibration center approved by the German Calibration Service (DKD). The calibration documentation consists of the DKD calibration certificate.

Refer to Chapter 5 for a detailed description on shipping of the instrument and ordering of spare parts.

## Contents - Chapter 1 "Performance Test"

1 Performance Test ..... 1.1
Test Instructions ..... 1.1
Measuring Equipment and Accessories ..... 1.1
Performance Test FSP ..... 1.3
Checking the Reference Frequency Accuracy ..... 1.3
Checking Imunity to Interference ..... 1.3
$1^{\text {st }}$ IF Image Frequency Rejection ..... 1.4
$2^{\text {nd }}$ IF Image Frequency Rejection ..... 1.4
$3^{\text {rd }}$ IF Image Frequency Rejection ..... 1.4
$1^{\text {st }}$ IF Rejection ..... 1.5
$2^{\text {nd }}$ IF Rejection. ..... 1.5
Checking Non-linearities ..... 1.6
Third-Order Intercept Point. ..... 1.6
Second-Order Harmonic Distortion. ..... 1.7
Checking IF Filters. ..... 1.8
Checking the bandwith switching level accuracy ..... 1.8
Checking Bandwidth ..... 1.9
Checking the Shape Factor. ..... 1.9
Checking Noise Display ..... 1.10
Checking the Level accuracy and the Frequency Response. ..... 1.11
Checking the Display Linearity ..... 1.14
Checking the RF Attenuator ..... 1.15
Checking the Reference Level Switching (IF-Gain). ..... 1.16
Checking the Phase Noise ..... 1.18
Performance Test Option Tracking Generator - FSP-B9 ..... 1.21
Checking Output Level ..... 1.21
Checking Frequency Response ..... 1.21
Checking Modulation ..... 1.22
Checking I/Q Modulation ..... 1.22
Checking Amplitude Modulation. ..... 1.23
Checking Frequency Modulation ..... 1.24
Performance Test Option Electronic Attenuator- FSP-B25 ..... 1.25
Checking Noise Display with Preamplifier (B25) ..... 1.25
Checking the Level accuracy and the Frequency Response with Preamplifier ..... 1.26
Checking the Frequency Response with Electronic Attenuator ..... 1.29
Checking Non-linearities with Electronic Attenuator ..... 1.31
Third-Order Intercept. ..... 1.31
Checking the RF Attenuator (with Option B25) ..... 1.32
Checking the electronic Attenuator accuracy ..... 1.33
Performance Test Report FSP ..... 1.35
Performance Test Report Option FSP-B9 ..... 1.47
Performance Test Report Option FSP-B25 ..... 1.49

This page is left blank intentionally.

## 1 Performance Test

## Test Instructions

- The rated specifications of the analyzer are tested after a warm-up time of at least 15 minutes and overall calibration. Only in this case can the compliance with the guaranteed data be ensured. Starting of overall adjustment: [CAL : CAL TOTAL]
- If nothing else specified, all measurements will be done with external reference frequency.
- Values given in the following sections are not guaranteed. Only the technical specifications of the data sheet are binding.
- The values given in the datasheet are the guaranteed limits. Due to measurement errors these limits must be extended by the tolerance of the measuring equipment used in this performance test.
- Inputs for settings during measurements are shown as following:
[<KEY>] Press a key on the front panel, eg [SPAN]
[<SOFTKEY>] Press a softkey, eg [MARKER -> PEAK]
[ $<\mathbf{n n}$ unit>] Enter a value and terminate by entering the unit, eg [12 kHz]
Successive entries are separated by [:], eg. [ BW : RES BW MANUAL : $\mathbf{3} \mathbf{~ k H z}$ ]


## Measuring Equipment and Accessories

| Item | Type of equipment | Specifications recommended | Equipment recommended | R\&S Order No. | Use |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Frequency counter | $\begin{aligned} & \text { accuracy }<1 \times 10^{-9}, \\ & \text { frequency range up to } 10 \mathrm{MHz} \end{aligned}$ | Advantest R5361B with option 23 |  | Frequency Accuracy of Reference Oscillator |
| 2 | Signal generator | FSP 3: 10 MHz to 10 GHz FSP 7: 10 MHz to 10 GHz FSP 13: 10 MHz to 13.6 GHz FSP 30: 10 MHz to 30 GHz | SMP02 | 1035.5005.02 | Immunity to Interference Third-Order Intercept Frequency Response |
| 3 | Signal generator | phase noise at 498 MHz : <br> $<-100 \mathrm{dBc} / \mathrm{Hz} @ 100 \mathrm{~Hz}$ <br> $<-115 \mathrm{dBc} / \mathrm{Hz} @ 1 \mathrm{kHz}$ <br> $<-127 \mathrm{dBc} / \mathrm{Hz} @ 10 \mathrm{kHz}$ <br> $<-130 \mathrm{dBc} / \mathrm{Hz} @ 100 \mathrm{kHz}$ <br> $<-142 \mathrm{dBc} / \mathrm{Hz} @ 1 \mathrm{MHz}$ | SMHU | 0835.8011.52 | Calibration Source 128 <br> MHz <br> 2nd-Order Harmonic Dist. <br> Third-Order Intercept <br> IF Filters <br> Frequency Response <br> Display Linearity <br> RF Attenuator <br> Reference Level Switching <br> Phase Noise |
| 4 | Signal generator | FSP 07: 10 MHz to 7 GHz <br> FSP 13: 10 MHz to 13.6 GHz <br> FSP 30: 10 MHz to 30 GHz | SMP02 | 1035.5005.02 | Third-Order Intercept |
| 5 | 3-dB coupler (power combiner) | decoupling > 12 dB <br> FSP 03: 10 MHz to 3 GHz <br> FSP 07: 10 MHz to 7 GHz <br> FSP 13: 10 MHz to 13.6 GHz <br> FSP 30: 10 MHz to 30 GHz |  |  | Third-Order Intercept |


| Item | Type of equipment | Specifications recommended | Equipment recommended | R\&S Order No. | Use |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | $6-\mathrm{dB}$ divider (power splitter) | level imbalance <br> 1 MHz to $1 \mathrm{GHz} \quad \leq 0.1 \mathrm{~dB}$ <br> 1 GHz to $7 \mathrm{GHz} \quad \leq 0.2 \mathrm{~dB}$ <br> 7 GHz to $13.6 \mathrm{GHz} \quad \leq 0.3 \mathrm{~dB}$ <br> 13.6 GHz to $30 \mathrm{GHz} \leq 0.4 \mathrm{~dB}$ <br> FSP 03: 10 MHz to 3 GHz <br> FSP 07: 10 MHz to 7 GHz <br> FSP 13: 10 MHz to 13.6 GHz <br> FSP 30: 10 MHz to 30 GHz |  |  | Frequency Response |
| 7 | $50-\Omega$ termination | Return loss > 20 dB  <br> FSP 03: to 3 GHz <br> FSP 07: to 7 GHz <br> FSP 13: to 13.6 GHz <br> FSP 30: to 30 GHz | RNA <br> RNA <br> Wiltron 28S50 <br> Wiltron 28K50 | $\begin{aligned} & 0272.4510 .50 \\ & 0272.4510 .50 \end{aligned}$ | Noise Display |
| 8 | Power meter |  | NRVD | 0857.8008.02 | Frequency Response |
| 9 | Power sensor | $\begin{aligned} & 1 \mathrm{MHz} \text { to } 3 \mathrm{GHz} \\ & \text { RSS } \leq 0.8 \% \\ & \text { Meter noise } \leq 20 \mathrm{pW} \end{aligned}$ | NRV-Z4 | 0828.3618 .02 | Frequency Response |
| 10 | Power sensor | RSS referred to indicated Power: <br> 1 MHz to $1 \mathrm{GHz} \quad \leq 1.5 \%$ <br> 1 GHz to $7 \mathrm{GHz} \quad \leq 2 \%$ <br> 7 GHz to $13.6 \mathrm{GHz} \leq 3.5 \%$ <br> 13.6 GHz to $30 \mathrm{GHz} \leq 4 \%$ <br> FSP 03: 10 MHz to 3 GHz <br> FSP 07: 10 MHz to 7 GHz <br> FSP 13: 10 MHz to 13.6 GHz <br> FSP 30: 10 MHz to 30 GHz | NRV-Z4 <br> NRV-Z2 <br> NRV-Z2 <br> NRV-Z55 | $\begin{array}{\|l} 0828.3218 .02 \\ 0828.3218 .02 \\ 0828.3218 .02 \\ 1081.2005 .02 \end{array}$ | Frequency Response |
| 11 | Step attenuator | variable attenuation <br> 0 dB to $100 \mathrm{~dB}, 1-\mathrm{dB}$ steps attenuation accuracy $<0.1 \mathrm{~dB}(\mathrm{f}=128 \mathrm{MHz})$ | RSP | 0831.3515 .02 | Reference Level Switching Display Linearity RF Attenuator |
| 12 | Attenuator (2 x) | fixed attenuation 10 dB <br> FSP 03: 10 MHz to 3 GHz <br> FSP 07: 10 MHz to 7 GHz <br> FSP 13: 10 MHz to 13.6 GHz <br> FSP 30: 10 MHz to 30 GHz | DNF <br> DNF <br> Wiltron 43KB-10 <br> Wiltron 43KC-10 | $\begin{array}{\|l} 0272.4210 .50 \\ 0272.4210 .50 \end{array}$ | Third-Order Intercept |
| 13 | Lowpass ${ }^{1)}$ | ```cut-off frequency: 28 MHz, 107 MHz, 262 MHz, 640 MHz, 1000 MHz, 1700 MHz``` |  |  | $2^{\text {nd }}$-Order Harmonc Dist. |
| 14 | N -cable | Attenuation $<0,2 \mathrm{~dB}$ to 3 GHz |  |  | TG-Output level |
| 15 | Spectrumanalyzer | Frequency range to 3 GHz | FSP 3 | 1093.4495.03 | TG-Modulation |
| 16 | Arbitrary Waveform Generator | Frequency range to 10 MHz 2 sinusodial signals with 90 deg. phase difference | ADS |  | TG-Modulation |
| 17 | Voltmeter | DC- and AC voltages | URE |  | TG-Modulation |

1) The lowpass filters improve the harmonics suppression of the test signal. If the harmonics suppression at the signal generator output is already large enough, no filters are required for the frequency ranges concerned (see section "Checking Imunity to Interference" for harmonics suppression required)

## Performance Test FSP

## Checking the Reference Frequency Accuracy

| Test equipment: | Frequency counter (Section "Measurement Equipment", item 1): accuracy $<1 \times 10^{-9}$ frequency range up to 10 MHz |
| :---: | :---: |
| Test setup: | > connect frequency counter to $10-\mathrm{MHz}$ reference output of the FSP (rear panel) |
| FSP settings: | - [SETUP : REFERENCE INT / EXT ] <br> toggle to internal reference (INT) |
| Measurement: | > measure frequency with frequency counter nominal frequency: <br> model without OCXO (option FSP-B4). $\qquad$ $10 \mathrm{MHz} \pm 10 \mathrm{~Hz}$ <br> .. model with OCXO (option FSP-B4) $\qquad$ $10 \mathrm{MHz} \pm 1 \mathrm{~Hz}$ |
| Note: | The frequency of the reference oscillator can be adjusted by means of | a service function (see chapter "Adjustment")

## Checking Imunity to Interference

| Test equipment: | Signal generator (Section "Measurement Equipment", item 2):  <br>  FSP 3: 10 MHz to 10 GHz <br>  FSP 7: 10 MHz to 10 GHz <br>  FSP 13: 10 MHz to 13.6 GHz <br>  FSP 30: 10 MHz to 30 GHz <br>  maximum level $\geq-10 \mathrm{dBm}$ |
| :---: | :---: |
| Test setup: | > connect RF output of the signal generator to RF input. |
| Signal generator settings: | Level: adjust the output level of signal generator for an RF-Input level of - 10 dBm |
| FSP settings: | - [ PRESET ] <br> - [ AMPT : RF ATTEN MANUAL : $\mathbf{0} \mathbf{d B}$ ] <br> - [ AMPT : REF LEVEL : -30 dBm ] <br> - [ SPAN : $\mathbf{1 0 0} \mathbf{~ k H z}$ ] <br> - [ BW : RES BW MANUAL : $\mathbf{3} \mathbf{~ k H z}$ ] |

## $1^{\text {st }}$ IF Image Frequency Rejection

Additional signal generator settings:

Additional FSP settings: - [ FREQ : CENTER : $\left\{\mathrm{f}_{\mathrm{in}}\right\}$ ]

Measurement: $>$ Set marker to peak of signal [ MKR $\Rightarrow$ : PEAK ]

Evaluation: The image frequency rejection is the difference between the output level of the signal generator and the level reading of marker $1\left(L_{\text {dis }}\right)$ : Image frequency rejection $=-10 \mathrm{dBm}-L_{\text {dis }}$

## $2^{\text {nd }}$ IF Image Frequency Rejection

Additional signal generator $\quad$ - frequency $\quad f_{i n}+808.8 \mathrm{MHz}$ settings:

Additional FSP settings:

- [ FREQ : CENTER : $\left\{\mathrm{f}_{\mathrm{in}}\right\}$ ]

See table of performance test report for values of $f_{i n}$.
Measurement:
$>$ Set marker to peak of signal [ MKR $\Rightarrow$ : PEAK ]

Evaluation:
The image frequency rejection is the difference between the output level of the signal generator and the level reading of marker 1 ( $\mathrm{L}_{\text {dis }}$ ):

Image frequency rejection $=-10 \mathrm{dBm}-L_{\text {dis }}$

## $3^{\text {rd }}$ IF Image Frequency Rejection

Additional signal generator settings:

Additional FSP settings:

Measurement:

Evaluation:

- frequency $\quad f_{\text {in }}+40.8 \mathrm{MHz}$
- [ FREQ : CENTER : $\left\{\mathrm{f}_{\mathrm{in}}\right\}$ ]

See table of performance test report for values of $f_{i n}$.
> Set marker to peak of signal [ MKR $\Rightarrow$ : PEAK ]

The image frequency rejection is the difference between the output level of the signal generator and the level reading of marker 1 ( $L_{\text {dis }}$ ): Image frequency rejection $=-10 \mathrm{dBm}-\mathrm{L}_{\text {dis }}$

## $1^{\text {st }}$ IF Rejection

Additional signal generato settings:

Additional FSP settings:

Measurement: $>$ Set marker to peak of signal

- [ MKR $\Rightarrow$ : PEAK ]

Evaluation:

## $2^{\text {nd }}$ IF Rejection

Additional signal generator settings:

Additional FSP settings:

Measurement:

Evaluation:

- frequency $\quad 3476.4 \mathrm{MHz}$
- [ FREQ : CENTER : $\left\{\mathrm{f}_{\mathrm{in}}\right\}$ ] generator and the level reading of marker 1 ( $\mathrm{L}_{\text {dis }}$ ):

$$
\text { IF rejection }=-10 \mathrm{dBm}-L_{\text {dis }}
$$

- frequency $\quad$ 404.4 MHz
- [ FREQ : CENTER : $\left\{\mathrm{f}_{\mathrm{in}}\right\}$ ]
> Set marker to peak of signal
- [ MKR $\Rightarrow$ : PEAK ]

See table of performance test report for values of $f_{i n}$.

The IF rejection is the difference between the output level of the signal

See table of performance test report for values of $f_{i n}$.

The IF rejection is the difference between the output level of the signal generator and the level reading of marker $1\left(L_{\text {dis }}\right)$ :

IF rejection $=-10 \mathrm{dBm}-L_{\text {dis }}$

## Checking Non-linearities

## Third-Order Intercept Point

Test equipment: -2 sig
FSP 3: Section "Measurement Equipment", item 2 and 3

FSP 7 / 13 / 30: Section "Measurement Equipment", item 2 and 4 frequency range:

FSP 3: 10 MHz to 3 GHz
FSP 7: $\quad 10 \mathrm{MHz}$ to 7 GHz
FSP 13: 10 MHz to 13.6 GHz
FSP 30: 10 MHz to 30 GHz
maximum level $\geq 0 \mathrm{dBm}$

- 2 attenuators (Section "Measurement Equipment", item 12)
attenuation $\quad a_{\text {ATT }}=10 \mathrm{~dB}$
frequency range
FSP 3: $\quad 10 \mathrm{MHz}$ to 3 GHz
FSP 7: $\quad 10 \mathrm{MHz}$ to 7 GHz
FSP 13: 10 MHz to 13.6 GHz
FSP 30: $\quad 10 \mathrm{MHz}$ to 30 GHz
-3-dB coupler (Section "Measurement Equipment", item 5) frequency range

FSP 3: $\quad 10 \mathrm{MHz}$ to 3 GHz
FSP 7: $\quad 10 \mathrm{MHz}$ to 7 GHz
FSP 13: 10 MHz to 13.6 GHz
FSP 30: 10 MHz to 30 GHz
decoupling > 12 dB

Test setup: \begin{tabular}{rl}

\& $>$| connect RF outputs of the signal generators via $10-\mathrm{dB}$ attenuators |
| :--- |
|  |
| to the inputs of the $3-\mathrm{dB}$ coupler | <br>

\& $>$ connect output of the $3-\mathrm{dB}$ coupler to RF input of the FSP.
\end{tabular}



## Second-Order Harmonic Distortion

Test equipment:

Test setup:

## Note:

Signal generator settings:

FSP settings:

Measurement:

Measurement:

Evaluation:

- Signal generator (Section "Measurement Equipment", item 3) frequency range:

FSP 3: $\quad 9 \mathrm{kHz}$ to 1.5 GHz
FSP 7/ 13 / 30: $\quad 9 \mathrm{kHz}$ to 3.5 GHz
Recommended harmonic suppression:
$\mathrm{f} \leq 200 \mathrm{MHz}: \quad>45 \mathrm{dBc}$
$\mathrm{f}>200 \mathrm{MHz}: \quad>55 \mathrm{dBc}$
$\mathrm{f}>1500 \mathrm{MHz}: \quad>60 \mathrm{dBc}$
In order to improve the harmonic suppression of the generator it is recommended to insert a lowpass filter with a suitable cut-off frequency (Section "Measurement Equipment", item 13) after the generator.
> connect RF output of signal generator to the input of the lowpass
> connect the output of the lowpass to the RF input of the FSP
If the harmonic suppression of the signal generator is sufficient, the lowpass can be left out.
The RF output of the generator can be connected directly to the RF input of the FSP in this case.

| - level: | -10 dBm |
| :--- | :--- |
| - frequency: | $\mathrm{f}_{\text {in }}$ |

see table of performance test report for values of $f_{\text {in }}$

- [ PRESET ]
- [ AMPT : RF ATTEN MANUAL : $\mathbf{0} \mathbf{d B}$ ]
- [ AMPT : - $\mathbf{1 0} \mathrm{dBm}$ ]
- [SPAN: $\mathbf{3} \mathrm{kHz}$ ]
- [ BW : RES BW MANUAL : $\mathbf{1 k H z}$ ]
- [ FREQ: CENTER : $\left\{\mathrm{f}_{\mathrm{in}}\right\}$ ]

See table of performance test report for values of $f_{i n}$
> set marker to peak of signal

- [ MKR $\Rightarrow$ : PEAK ]

The level of the input signal $\mathrm{L}_{\mathbb{N}}$ is displayed by the marker reading for marker 1.
> set center frequency of the FSP to the frequency of the 2nd harmonic

- [ FREQ : CENTER : $\left\{2 \times f_{\text {in }}\right\}$ ]
> set marker to peak of the 2nd harmonic
- [ MKR $\Rightarrow$ : PEAK ]

The level of the harmonic signal $L_{K 2}$ is displayed by the marker reading for marker 1 .

The second order harmonic distortion can be calculated as
$I_{\mathrm{k}_{2}} / \mathrm{dBm}=\left(\mathrm{L}_{\mathrm{N}}-\mathrm{L}_{\mathrm{k} 2}\right)+\mathrm{L}_{\mathrm{N}}$

## Checking IF Filters

| Test equipment: | Signal generator (Section "Measurement Equipment", item 3): <br> frequency <br> level$\quad$128 MHz |
| :--- | :--- |
| Test setup: | $>$ connect RF output of the signal generator to the RF input of the |

## Checking the bandwith switching level accuracy

Reference measurement (RBW 10 kHz )

| Signal generator settings: | $\begin{array}{ll}\text { - frequency: } & 128 \mathrm{MHz} \\ \text { - level: } & -30 \mathrm{dBm}\end{array}$ |
| :---: | :---: |
| FSP settings: | - [PRESET] |
|  | - [ AMPT : -20 dBm ] |
|  | - [ AMPT : RF ATTEN MANUAL : 10 dB ] |
|  | - [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$ ] |
|  | - [SPAN : 5 kHz ] |
|  | - [ TRACE : DETECTOR : RMS ] |
|  | - [ BW : RBW MANUAL : $\mathbf{1 0}$ : kHz ] |

Reference measurement:
$>$ set marker to peak of signal

- [ MKR $\Rightarrow$ : PEAK ]
$>$ set reference to peak of signal
- [ MKR : REFERENCE FIXED ]

Checking the level accuracy
FSP settings: $\quad-[$ SPAN $:\{0.5 \times$ RBW $\}]$

- [ BW : RBW MANUAL : \{RBW\} : ENTER]
$\begin{array}{ll}\text { Note: } & \begin{array}{l}\text { To check the FFT- filter, the resolution bandwidth has to be set } \\ \\ \text { manually to FFT-Mode. }\end{array} \\ \text {-[BW : BW MODE : FFT ] }\end{array}$


## Checking Bandwidth

| Signal generator settings: | - frequency: 128 MHz <br> - level: $\quad-10 \mathrm{dBm}$ |
| :---: | :---: |
| FSP settings: | - [ PRESET ] <br> - [ AMPT : RF ATTEN MANUAL : 10 dB ] <br> - [ AMPT : $\mathbf{0} \mathbf{d B m}$ ] <br> - [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$ ] <br> - [ BW : COUPLING RATIO : SPAN/RBW MANUAL : 3 : ENTER ] |
|  | > Determine 3-dB-Bandwith <br> - [ MKR FCTN : N DB DOWN : $\mathbf{3} \mathbf{d B}$ ] <br> - [ SPAN : $\{3 \times$ RBW $\}$ ] |
|  | See table of performance test report for values of RBW. |
| Note: | To check the $10-\mathrm{MHz}$ filter, the resolution bandwidth has to be set manually to 10 MHz . All other bandwidths will be set automatically by changing the span. |
|  | -[ BW : RES BW MANUAL : $\mathbf{1 0} \mathbf{~ M H z}$ ] |
| Measurement: | - [ MKR $\Rightarrow$ : PEAK ] |
|  | The 3-dB bandwidth is displayed by the reading 'BW \{bandwidth\}'. |

## Checking the Shape Factor

Note: $\quad$ To check the shape factor the values of the $3 d B$ bandwith will be needed. Please check before this measurement.

| Signal generator settings: | - frequency: | 128 MHz |
| :--- | :--- | :--- |
|  | - level: | 0 dBm |

FSP settings:

- [ PRESET ]
- [ AMPT : RF ATTEN MANUAL : $\mathbf{1 0} \mathbf{~ d B}$ ]
- [ AMPT : $\mathbf{0} \mathbf{d B m}$ ]
- [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}]$
- [ BW : COUPLING RATIO : SPAN/RBW MANUAL : 20 ENTER ]
- [ BW : COUPLING RATIO : RBW/VBW NOISE [10]]
- [ MKR FCTN : N DB DOWN : 60 dB ]
- [ SPAN : \{20 x RBW\} ]

See table of performance test report for values of RBW.

| Note: | To check the $10-\mathrm{MHz}$ filter, the resolution bandwidth has to be set manually to 10 MHz . All other bandwidths will be set automatically by changing the span. <br> -[ BW : RES BW MANUAL : $\mathbf{1 0} \mathbf{~ M H z}$ ] |
| :---: | :---: |
| Measurement: | - [ MKR $\Rightarrow$ : PEAK ] |
|  | The 60 dB bandwidth is displayed by the reading 'BW \{bandwidth\}'. |
| Evaluation: | The shape factor is calculated by BW ( 60 dB ) / BW (3dB). |

## Checking Noise Display

| Test equipment: | 50   <br> $\Omega$ termination (Section "Measurement  Equipment", item 7) <br> frequency range FSP 3: to 3 GHz <br>  FSP 7: to 7 GHz <br>  FSP 13: to 13.6 GHz <br>  FSP 30: to 30 GHz |
| :---: | :---: |
| Test setup: | > terminate the RF input of the FSP with $50 \Omega$ |
| FSP settings: | - [PRESET] <br> - [ AMPT : RF ATTEN MANUAL : 0 dB ] <br> - [SPAN : $\mathbf{0} \mathrm{Hz}$ ] <br> - [ BW: RES BW MANUAL : $\mathbf{1 0 ~ H z ~ ] ~}$ <br> - [ BW : VIDEO BW MANUAL: 1 Hz ] <br> - [ BW : SWEEP TIME MANUAL : $\mathbf{0 . 1} \mathbf{s}$ ] <br> - [TRACE 1 : AVERAGE] <br> - [ TRACE 1 : SWEEP COUNT : 30 ENTER ] <br> - [ AMPT : \{RefLev\}] <br> - [ FREQ : CENTER : $\left\{\mathrm{f}_{n}\right\}$ ] |
|  | See table below for values of RefLev. |
| Measurement: | See table of performance test report for values of $f_{n}$. $\begin{aligned} & \text { set marker to peak } \\ & -[\text { MKR } \Rightarrow: \text { PEAK }] \end{aligned}$ |
| Evaluation: | The noise level is displayed by the level reading of marker 1. |


| Frequency | $<10 \mathrm{kHz}$ | $<100 \mathrm{kHz}$ | $<1 \mathrm{MHz}$ | $<10 \mathrm{MHz}$ | $>10 \mathrm{kHz}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| RefLev | -10 dBm | -20 dBm | -30 dBm | -60 dBm | -60 dBm |

## Checking the Level accuracy and the Frequency Response

Test equipment:

${ }^{1}$ ) If a power splitter with higher level imbalance is used correction of the measured frequency response is recommended.

| Determining the level | at 128 MHz |
| :---: | :---: |
| Test setup: | connect power sensor (item 9) to the power meter and execute function 'ZERO' when there is no signal applied to the power sensor <br> connect power sensor to RF output of signal generator |
| Signal generator settings: | - frequency 128 MHz <br> - level -30 dBm |
| Measurement: | > determine output power of the signal generator with the power meter <br> > connect RF output of the signal generator to RF input of the FSP |
| FSP settings: | - [PRESET] <br> - [ AMPT : RF ATTEN MANUAL : $\mathbf{1 0 ~ d B}$ ] <br> - [ AMPT : - 20 dBm ] <br> - [SPAN : $\mathbf{3 0} \mathbf{~ k H z}$ ] <br> - [ BW : RES BW MANUAL : $\mathbf{1 0} \mathbf{~ k H z}$ ] <br> - [ TRACE : DETECTOR : RMS ] <br> - [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$ ] <br> > set marker to peak of signal <br> - [MKR $\Rightarrow$ : PEAK] |
| Evaluation: | The difference between the signal levels measured with the power meter and the FSP (level reading of marker 1) reflects the absolute level accuracy of the FSP. It can be calculated as: <br> Level accuracy ${ }_{128 \mathrm{MHz}}=\mathrm{L}_{\text {FSP }}-\mathrm{L}_{\text {powermeter }}$ |

## Checking the frequency response

| Test setup: | connect RF output of the signal generator to input of the divider <br> connect output 1 of the divider to the power sensor / power meter <br> connect output 2 of the divider to RF input of the FSP |
| :---: | :---: |
| Signal generator settings: | - level 0 dBm <br> - frequency 128 MHz |
| FSP settings: | - [ PRESET ] <br> - [ AMPT : RF ATTEN MANUAL : 10 dB ] <br> - [ AMPT : 0 dBm ] <br> - [ SPAN : $\mathbf{1 0 0} \mathbf{~ k H z}$ ] <br> - [ BW : RES BW MANUAL : $\mathbf{1 0} \mathbf{~ k H z}$ ] <br> - [ TRACE : DETECTOR : RMS ] <br> - [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$ ] |
| Reference measurement: | Determine signal level $L_{\text {powermeter }}$. <br> > set marker to peak of signal <br> - [ MKR $\Rightarrow$ : PEAK ] <br> The signal level $L_{\text {FSP }}$ is displayed by the level reading of marker 1. <br> Ref $_{128 \mathrm{MHz}}=\mathrm{L}_{\text {FSP }}-\mathrm{L}_{\text {powermeter }}$ |
| Measurement <br> Signal generator settings: | - frequency $\quad f_{\text {fresp }}$ see table of performance test report for values of $f_{\text {fresp }}$ |
| Power meter settings: | Determine signal level $L_{\text {powermeter }}$. To achive higher accuracy it is recommended to compensate the frequency response of the power sensor. |
| FSP settings: | - [ FREQ : CENTER : \{ffresp $\}$ ] <br> see table of performance test report for values of $\mathrm{f}_{\text {fresp }}$ $\begin{aligned} & >\text { - set marker to peak of signal } \\ & -[\mathbf{M K R} \Rightarrow: \text { PEAK }] \end{aligned}$ |

The signal level $\mathrm{L}_{\mathrm{FSP}}$ is displayed by the level reading of marker 1.
Evaluation:
The frequency response can be calculated as:
Frequency response $=L_{\text {FSP }}-L_{\text {powermeter }}-\operatorname{Ref}_{128 \mathrm{MHz}}$

## Checking the Display Linearity

| Test equipment: | - Signal generator (Section "Measurement Equipment", item 3)frequency 128 MHzmaximum level $\geq 10 \mathrm{dBm}$- step attenuator (Section "Measurement Equipment", item 11)frequencyattenuation 128 MHz <br> attenuation accuracy 0 to 100 dB in 1 dB steps <br>  $<0.1 \mathrm{~dB}$ |
| :---: | :---: |
| Test setup: | connect RF output of the signal generator to RF input of the step attenuator <br> connect RF output of the step attenuator to RF input of the FSP |
| Signal generator settings: | - frequency 128 MHz <br> - level +10 dBm |
| Step attenuator settings: | attenuation 20 dB |
| FSP settings: | - [ PRESET ] <br> - [ AMPT : RF ATTEN MANUAL : $\mathbf{1 0} \mathbf{~ d B}$ ] <br> - [ AMPT : 0 dBm ] <br> - [ FREQ :CENTER : 128 MHz ] <br> - [ SPAN : $\mathbf{0 ~ H z}$ ] <br> - [ TRACE : DETECTOR : RMS ] <br> 1.Measurement: <br> - [ BW : RES BW MANUAL : $\mathbf{3 0 0} \mathbf{~ H z}$ ] <br> 2.Measurement: <br> - [ BW : RES BW MANUAL : $\mathbf{3 0 0} \mathbf{~ k H z}$ ] |
| Reference measurement: | > set marker to peak of signal <br> - [ MKR $\Rightarrow$ : PEAK ] <br> > set reference to peak of signal <br> - [ MKR : REFERENCE FIXED ] |
| Measurement |  |
| Step attenuator settings: | Attenuation $\left\{\mathrm{a}_{\text {ATT }}\right\}$ see table of performance test report for values of $\mathrm{a}_{\mathrm{ATT}}$. |
| Evaluation: | The difference between the level of the input signal of the FSP and the reference (about 10 dB below the reference level) is displayed in the marker field by the reading 'Delta [T1 FXD]'. |

## Checking the RF Attenuator

Test equipm

Test setup:

Signal generator settings:

Step attenuator settings:
FSP settings:

- Signal generator (Section "Measurement Equipment", item 3) frequency $\quad 128 \mathrm{MHz}$ maximum level $\geq 0 \mathrm{dBm}$
- step attenuator (Section "Measurement Equipment", item 11) frequency $\quad 128 \mathrm{MHz}$ attenuation 0 to 80 dB in 10 dB steps attenuation accuracy $<0.1 \mathrm{~dB}$
> connect RF output of the signal generator to RF input of the step attenuator
$>$ connect RF output of the step attenuator to RF input of the FSP
- Frequency
- Level

128 MHz 0 dBm
attenuation
70 dB

- [ PRESET ]
- [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$ ]
- [ SPAN : 500 Hz ]
- [ BW : RES BW MANUAL : $\mathbf{1} \mathbf{k H z}$ ]
- [ TRACE : DETECTOR : RMS ]
- [ BW : VIDEO BW MANUAL : 100 Hz ]
- [ AMPT : RF ATTEN MANUAL : $\mathbf{1 0} \mathbf{~ d B}$ ]
- [ AMPT : -30 dBm ]

Reference measurement: $>$ set marker to peak of signal

- [ MKR $\Rightarrow$ : PEAK ]
> set reference to peak of signal
- [ MKR : REFERENCE FIXED ]


## Measurement

Step attenuator settings: attenuation $\quad\left\{80 \mathrm{~dB}-\mathrm{a}_{\text {FsP }}\right\}$ see table below for values of $\mathrm{a}_{\text {Att }}$.

FSP settings: - [ AMPT : RF ATTEN MANUAL : $\left\{\mathrm{a}_{\text {FSP }}\right\}$ ]

- [ AMPT : $\left\{-40 \mathrm{dBm}+\mathrm{a}_{\mathrm{FsP}}\right\}$ dBm ]
- [ MKR $\Rightarrow$ : PEAK ]
see table below for values of $a_{\text {FSP }}, a_{\text {ATT }}$ and reference level.
Evaluation: reference (at 10 dB RF-Attenuation) is displayed in the marker field by the reading 'Delta [T1 FXD]'.

| $\mathbf{a}_{\text {ATT }}$ | 80 dB | 70 dB | 60 dB | 50 dB | 40 dB | 30 dB | 20 dB | 10 dB |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{a}_{\text {FSP }}$ | 0 dB | 10 dB | 20 dB | 30 dB | 40 dB | 50 dB | 60 dB | 70 dB |
| reference level | -40 dBm | -30 dBm | -20 dBm | -10 dBm | 0 dBm | +10 dBm | +20 dBm | +30 dBm |

## Checking the Reference Level Switching (IF-Gain)

| Test principle: | The IF gain of the FSP can be switched from 0 to 50 dB by changing the reference level at fixed RF attenuation. To prevent the IF gain accuracys to be mixed up with the log amplifier accuracy it is determined by comparison using an external precision attenuator. |
| :---: | :---: |
| Test equipment: | - Signal generator (Section "Measurement Equipment", item 3) frequency $128 \mathrm{MHz}$ $\text { maximum level } \quad \geq-10 \mathrm{dBm}$ |
|  | - step attenuator (Section "Measurement Equipment", item 11)  <br> frequency 128 MHz <br> attenuation 0 to 60 dB in 1 dB steps <br> attenuation accuracy $<0.1 \mathrm{~dB}$ |
| Test setup: | connect RF output of the signal generator to RF input of the step attenuator |
|  | > connect RF output of the step attenuator to RF input of the FSP |
| Signal generator settings: | - frequency 128 MHz <br> - level -10 dBm |
| Step attenuator settings: | attenuation 20 dB |
| FSP settings: | - [ PRESET ] <br> - [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$ ] <br> - [ SPAN : 2 kHz ] <br> - [ BW : RES BW MANUAL : $\mathbf{1} \mathbf{~ k H z}$ ] <br> - [ BW : VIDEO BW MANUAL : 100 Hz ] <br> - [ TRACE : DETECTOR : RMS ] <br> - [ AMPT : RF ATTEN MANUAL : $\mathbf{1 0} \mathbf{d B}$ ] <br> - [ AMPT : -10 dBm ] |
| Reference measurement: | > set marker to peak of signal <br> - [ MKR $\Rightarrow$ : PEAK ] |
|  | > set reference to peak of signal <br> - [ MKR : REFERENCE FIXED ] |

## Measurement

Step attenuator settings:

FSP settings:
attenuation $\left\{\mathrm{a}_{\mathrm{ATT}}\right\}$
see table below for values of $\mathrm{a}_{\text {Att }}$.

- [ AMPT : \{reference level\} dBm ]
see table below for values of reference level.
- [ MKR $\Rightarrow$ : PEAK ]

The difference between the level of the input signal of the FSP and the reference (at 10 dB IF-Gain) is displayed in the marker field by the reading 'Delta [T1 FXD]'.

## 10-dB gain steps:

| $\mathbf{a}_{\text {ATt }}$ | 10 dB | 20 dB | 30 dB | 40 dB | 50 dB | 60 dB |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| reference level | 0 dBm | -10 dBm | -20 dBm | -30 dBm | -40 dBm | -50 dBm |

## 1-dB gain steps:

| $a_{\text {ATt }}$ | 20 dB | 21 dB | 22 dB | 23 dB | 24 dB | 25 dB | 26 dB | 27 dB | 28 dB | 29 dB |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| reference level | -10 dBm | -11 dBm | -12 dBm | -13 dBm | -14 dBm | -15 dBm | -16 dBm | -17 dBm | -18 dBm | -19 dBm |

## Checking the Phase Noise

| Test equipment: |  |
| :---: | :---: |
| Test setup: | > connect RF output of the signal generator to RF input of the FSP <br> > connect signal generator EXT REF output to the EXT REF input of the FSP. |
| Signal generator settings: | $\begin{array}{ll}\text { - frequency } & 498 \mathrm{MHz} \\ \text { - level } & 0 \mathrm{dBm}\end{array}$ |
| FSP settings: | - [ PRESET] |
|  | $\begin{aligned} & -[\text { FREQ : CENTER : } \mathbf{4 9 8} \mathbf{~ M H z ~ ] ~} \\ & -[\text { AMPT : } \mathbf{0} \text { dBm }] \\ & -[\text { AMPT : RF ATTEN MANUAL : } \mathbf{1 0} \mathbf{d B}] \\ & -[\text { SPAN }:\{\text { span }\}] \end{aligned}$ |
|  | depending on offset, see table below for values of span. |
|  | - [ BW : COUPLING RATIO : RBW/VBW NOISE[10] ] <br> - [ BW : RBW MANUAL : \{RBW\}] <br> depending on offset, see table below for values of RBW. |
|  | - [ TRACE 1 : AVERAGE ] <br> - [ SWEEP : SWEEP COUNT : 20 : ENTER ] |
|  | > activate phase noise marker <br> - [MKR FCTN: PHASE NOISE ] |
|  | - [ FREQ : CENTER : \{498 MHz + offset\} ] see table below for values of offset. |
|  | - [ AMPT : \{reference level\} ] depending on offset, see table below for values of reference level. |
|  | - [ AMPT : RF ATTEN MANUAL : \{a $\left.\mathrm{a}_{\text {Fsp }}\right\}$ ] depending on offset, see table below for values of $a_{\text {FSP }}$. |

set Phase Noise Marker
[ MKR : MARKER 2 : \{offset\} ]
see table below for values of offset.
Note: Please make sure not to measure on a spurious signal.

Evaluation:
The Phase Noise is displayed in the marker field by the reading 'Delta 2 [T1 PHN]'.

| Phase noise measurement settings |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Offset | Span | RBW | Reference Level | $\mathbf{a}_{\text {FSP }}$ |
| 100 Hz | 20 Hz | 10 Hz | 0 dBm | 10 dB |
| 1 kHz | 200 Hz | 100 Hz | 0 dBm | 10 dB |
| 10 kHz | 2 kHz | 300 Hz | -10 dBm | 10 dB |
| 100 kHz | 10 kHz | 3 kHz | -20 dBm | 0 dB |
| 1 MHz | 100 kHz | 30 kHz | -20 dBm | 0 dB |

Note: $\quad$ To obtain a precise measurement of the phase noise at high offspts the level used at the FSP input is 20 dB higher than the reference level. To reduce the measurement time the phase noise is measured with a small span around the frequency offset. This prevents the FSP from being overloaded.

This page is left blank intentionally.

## Performance Test Option Tracking Generator - FSP-B9

## Checking Output Level

| Test equipment: | - N connecting cable (section "Measuring Equipment", item 14) frequency up to 3 GHz <br> maximum attenuation <br> $<0.2 \mathrm{~dB}$ |
| :---: | :---: |
| Test setup: | > connect tracking generator output to RF input of FSP. |
| FSP settings: | - [ PRESET ] <br> - [ MODE NETWORK ] <br> - [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$ ] <br> - [ SPAN: 0 Hz ] <br> - [ BW : RES BW MANUAL : $\mathbf{1} \mathbf{~ k H z}$ ] <br> - [ AMPT : RF ATTEN MANUAL : $\mathbf{1 0 ~ d B}$ ] <br> - [ AMPT : -0 dBm ] |
|  | - [ NETWORK : SOURCE POWER \{level\}] <br> $\{$ level\} : $0 \mathrm{dBm} ;-5 \mathrm{dBm} ;-10 \mathrm{dBm} ;-15 \mathrm{dBm} ;-20 \mathrm{dBm} ;-25 \mathrm{dBm}$ |
| Measurement: | set marker to peak: |

$$
-[\text { MKR } \Rightarrow: \text { PEAK }]
$$

## Checking Frequency Response

| Test equipment: | - N connecting cable (section "Measuring Equipment", item 14) frequency up to 3 GHz maximum attenuation $<0.2 \mathrm{~dB}$ |
| :---: | :---: |
| Test setup: | connect Tracking Generator output to RF input of FSP. |
| FSP settings: | [ PRESET] <br> - [ NETWORK ] <br> - [ BW : RES BW MANUAL : $\mathbf{1 k H z}$ ] <br> - [ AMPT : RF ATTEN MANUAL : $\mathbf{1 0} \mathbf{d B}$ ] <br> - [ AMPT : 0 dBm ] <br> Range 1: <br> - [ FREQ : START : 9 kHz ] <br> - [ FREQ : STOP: $\mathbf{1 0 0} \mathrm{kHz}$ ] <br> - [ BW : RES BW MANUAL: $\mathbf{1 k H z}$ ] <br> Range 2: <br> - [ FREQ : START : $\mathbf{1 0 0} \mathbf{~ k H z}$ ] <br> - [ FREQ : STOP : 2 GHz ] <br> Range 3: <br> - [ FREQ : START : $\mathbf{2}$ GHz ] <br> - [ FREQ : STOP : 3 GHz ] |
|  | - [ NETWORK : SOURCE POWER \{level\}] Values for $\{$ level $\}$ : $0 \mathrm{dBm} ;-10 \mathrm{dBm} ;-20 \mathrm{dBm}$ |
| Measurement: | set marker to peak: <br> - [ MKR $\Rightarrow$ : PEAK ] <br> set marker to minimum value: |

[^0]
## Checking Modulation

## Checking I/Q Modulation

| Test equipment: | - ADS (section "Measuring Equipment", item 16) <br> - Spectrum Analyzer (section "Measuring Equipment", item 15) <br> - 2 Voltmeters (section "Measuring Equipment", item 17) <br> - 2 BNC T-pieces |
| :---: | :---: |
| Test setup: | apply the I and Q outputs of ADS to the I and $Q$ inputs of the analyzer. Check the ADS voltages in parallel via T-pieces. <br> > connect spectrum analyzer to the TG output. |
| ADS settings: | set $D C$ voltage (offset) to $0 \mathrm{mV} \pm 3 \mathrm{mV}$ AC voltage: $\mathrm{V}(\mathrm{pp})=1 \mathrm{~V} \pm 10 \mathrm{mV}$ frequency: 200 kHz phase $(I / Q)=90$ degrees |
| Spectrum analyzer settings: | $-[$ FREQUENCY: $\mathbf{1 ~ G H z}]$ $-[$ SPAN $: \mathbf{1 M H z}]$ $-[$ REF $:$ REF LEVEL : $\mathbf{0 d B m}]$ |
| FSP settings: | - [ FREQUENCY: 1 GHz ] <br> - [ SPAN : 0 MHz ] <br> - [ REF : REF LEVEL : 0 dBm ] <br> - [ NETWORK : SOURCE POWER 0 dBm <br> - [ MODULATION EXT I/Q] |
| Measurement of residual carrier | switch off I and Q channels on ADS. voltmeter display: DC voltage $<3 \mathrm{mV}$ <br> AC voltage $<3 \mathrm{mV}$ <br> set marker to peak: $-[\text { MKR } \Rightarrow: \text { PEAK }]$ <br> read measured value on spectrum analyzer (marker peak) |
| Measurement of impairments (imbalance of I and Q path) | switch on I and Q channels on ADS. <br> Measure carrier amplitude at 1 GHz and lines at $1 \mathrm{GHz}+200 \mathrm{kHz}$ and $1 \mathrm{GHz}-200 \mathrm{kHz}$. |

## Checking Amplitude Modulation

| Test equipment: | - ADS (section "Measuring Equipment", item 16) <br> - Spectrum Analyzer (section "Measuring Equipment", item 15) <br> - 2 Voltmeters (section "Measuring Equipment", item 17) <br> - 2 BNC T-pieces |
| :---: | :---: |
| Test setup: | apply the $I$ and $Q$ outputs of ADS to the $I$ and $Q$ inputs of the analyzer. Check the ADS voltages in parallel via T-pieces. <br> connect spectrum analyzer to the TG output. |
| ADS settings: | > AC voltage: $\mathrm{V}(\mathrm{pp})=1 \mathrm{~V} \pm 10 \mathrm{mV}$ frequency: 1 MHz |
| Spectrum analyzer settings: | $\begin{aligned} & -[\text { FREQUENCY : } \mathbf{1} \mathrm{GHz} \text { ] } \\ & -[\text { SPAN : } \mathbf{1 0} \mathrm{MHz} \text { ] } \\ & -[\text { REF : REF LEVEL : } \mathbf{0} \mathbf{~ d B m} \text { ] } \end{aligned}$ |
| FSP settings: | - [ FREQUENCY : 1 GHz ] <br> - [ SPAN : 0 MHz ] <br> - [ REF : REF LEVEL : $\mathbf{0}$ dBm ] <br> - [ NETWORK : SOURCE POWER 0 dBm <br> - [ MODULATION EXT AM] |
| Measurement: | determine the level spacing between the carrier signal at 1 GHz and the modulation lines at $1 \mathrm{GHz} \pm 1 \mathrm{MHz}$. |

## Checking Frequency Modulation

| Test equipment: | - ADS (section "Measuring Equipment", item 16) <br> - Spectrum Analyzer (section "Measuring Equipment", item 15) <br> - 2 Voltmeters (section "Measuring Equipment", item 17) <br> - 2 BNC T-pieces |
| :---: | :---: |
| Test setup: | apply the $I$ and $Q$ outputs of ADS to the $I$ and $Q$ inputs of the analyzer. Check the ADS voltages in parallel via T-pieces. <br> connect spectrum analyzer to the TG output. |
| ADS settings: | > AC voltage: $\mathrm{V}(\mathrm{pp})=100 \mathrm{mV} \pm 10 \mathrm{mV}$ frequency: 100 kHz |
| Spectrum analyzer settings: | $\begin{aligned} & -[\text { FREQUENCY : } \mathbf{1} \text { GHz ] } \\ & -[\text { SPAN : } \mathbf{1 0 0} \mathbf{~ M H z ~ ] ~} \\ & -[\text { BW : MHz ] } \\ & -[\text { REF : REF LEVEL : } \mathbf{0} \mathbf{~ d B m ~ ] ~} \end{aligned}$ |
| FSP settings: | - [ FREQUENCY : 1 GHz ] <br> - [ SPAN : 0 MHz ] <br> - [ REF : REF LEVEL : 0 dBm ] <br> - [ NETWORK : SOURCE POWER 0 dBm <br> - [ MODULATION EXT FM] |
| Measurement: | Determination of the peak spacing $=2 \times$ DEVIATION |

## Performance Test Option Electronic Attenuator- FSP-B25

## Checking Noise Display with Preamplifier (B25)

| Test equipment: | $50-\Omega$ termination (Section "Measurement Equipment", item 7) |
| :---: | :---: |
|  | frequency range: FSP 3 to 3 GHz <br>  FSP 7 to 7 GHz |
| Test setup: | > terminate the RF input of the FSP with $50 \Omega$ |
| FSP settings: | - [PRESET] <br> - [ AMPT : RF ATTEN MANUAL : 0 dB ] <br> - [SPAN : 0 Hz ] <br> - [ BW : RES BW MANUAL : $\mathbf{1 0 ~ H z}$ ] <br> - [ BW : VIDEO BW MANUAL: 1 Hz ] <br> - [ BW : SWEEP TIME MANUAL : $\mathbf{0 . 1} \mathbf{s}$ ] <br> - [TRACE 1 : AVERAGE ] <br> - [ TRACE 1 : SWEEP COUNT : 30 ENTER ] <br> - [ AMPT : - 80 dBm ] <br> - [ SETUP : PREAMP ON ] <br> - [ FREQ : CENTER : $\left\{f_{n}\right\}$ ] |
| Measurement: | > set marker to peak <br> - [ MKR $\Rightarrow$ : PEAK ] |
| Evaluation: | The noise level is displayed by the level reading of marker 1. |

## Checking the Level accuracy and the Frequency Response with Preamplifier

Test equipment:

```
- Signal generator :
    FSP 3: Section "Measurement Equipment", item 3
    FSP 7: Section "Measurement Equipment", item 3 and 4
    frequency range:
        FSP 3: }\quad10\textrm{MHz}\mathrm{ to 3 GHz
        FSP 7: }\quad10\textrm{MHz}\mathrm{ to }7\textrm{GHz
    maximum level }\geq0\textrm{dBm
- power meter (Section "Measurement Equipment", item 8)
- power sensor:
    FSP 3: Section "Measurement Equipment", item 9
    FSP 7 0: Section "Measurement Equipment", item 9 and 10
    frequency range:
            FSP 3: }\quad10\textrm{MHz}\mathrm{ to 3 GHz
            FSP 7: }\quad10\textrm{MHz}\mathrm{ to 7 GHz
    maximum power }\mp@subsup{P}{\mathrm{ max }}{}\geq100 \mu
    RSS referred to indicated power
        1 MHz to 1 GHz \leq 1.5%
        1GHz to 7GHz \leq2%
    impedance Z = 50 \Omega
-6-dB divider (Section "Measurement Equipment", item 6)
    frequency range:
            FSP 3: }\quad10\textrm{MHz}\mathrm{ to 3 GHz
            FSP 7: }\quad10\textrm{MHz}\mathrm{ to }7\textrm{GHz
    level imbalance }\mp@subsup{}{}{1}\mathrm{ ) }1\textrm{MHz}\mathrm{ to 1 GHz }\quad\leq0.1\textrm{dB
                                    1 GHz to 7 GHz }\leq0.2\textrm{dB
    ') If a power splitter with higher level imbalance is used correction
    of the measured frequency response is recommended.
```

| Determining the level accuracy at 128 MHz |  |
| :---: | :---: |
| Test setup: | connect power sensor (item 9) to the power meter and execute function 'ZERO' when there is no signal applied to the power sensor |
|  | > connect power sensor to RF output of signal generator |
| Signal generator settings: | $\begin{array}{ll}\text { - frequency } & 128 \mathrm{MHz} \\ \text { - level } & -30 \mathrm{dBm}\end{array}$ |
| Measurement: | determine output power of the signal generator with the power meter <br> connect RF output of the signal generator to RF input of the FSP |
| FSP settings: | - [PRESET] <br> - [ AMPT : RF ATTEN MANUAL : $\mathbf{1 0 ~ d B}$ ] <br> - [ AMPT : - 20 dBm ] <br> - [SETUP : PREAMP ON ] <br> - [SPAN : $\mathbf{1 0} \mathbf{~ k H z}$ ] <br> - [ BW : RES BW MANUAL : $\mathbf{1 0} \mathbf{~ k H z}$ ] <br> - [ TRACE : DETECTOR : RMS ] <br> - [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$ ] <br> set marker to peak of signal $-[\text { MKR } \Rightarrow: \text { PEAK }]$ |
| Evaluation: | The difference between the signal levels measured with the power meter and the FSP (level reading of marker 1) reflects the absolute level accuracy of the FSP. It can be calculated as: <br> Level accuracy ${ }_{128 \mathrm{MHz}}=\mathrm{L}_{\text {FSP }}-\mathrm{L}_{\text {powermeter }}$ |


| Checking th |  |
| :---: | :---: |
| Test setup: | > connect RF output of the signal generator to input of the divider <br> > connect output 1 of the divider to the power sensor / power meter <br> > connect output 2 of the divider to RF input of the FSP |
| Signal generator settings: | - level 0 dBm <br> - frequency 128 MHz |
| FSP settings | - [ PRESET] <br> - [ AMPT : RF ATTEN MANUAL : $\mathbf{3 0} \mathbf{d B}$ ] <br> - [ AMPT : 0 dBm ] <br> - [ SETUP : PREAMP ON] <br> - [ SPAN : $\mathbf{1 0 0} \mathbf{~ k H z}$ ] <br> - [ BW : RES BW MANUAL : $\mathbf{1 0} \mathbf{~ k H z}$ ] <br> - [ TRACE : DETECTOR : RMS ] <br> - [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{M H z}$ ] |
| Reference measurement: | Determine signal level $\qquad$ <br> > set marker to peak of signal <br> - [ MKR $\Rightarrow$ : PEAK ] <br> The signal level $\mathrm{L}_{\text {FSP }}$ is displayed by the level reading of marker 1 . <br> Ref $_{128 \mathrm{MHz}}=\mathrm{L}_{\text {FSP }}-\mathrm{L}_{\text {powermeter }}$ |
| Measurement <br> Signal generator settings: | - frequency $\quad f_{\text {fresp }}$ see table of performance test report for values of $\mathrm{f}_{\text {fresp }}$ |
| Power meter settings: | Determine signal level $\qquad$ To achive higher accuracy it is recommended to compensate the frequency response of the power sensor. |
| FSP settings: | - [ FREQ : CENTER : \{ffresp\} ] <br> see table of performance test report for values of $\mathrm{f}_{\text {fresp }}$. <br> set marker to peak of signal $-[\text { MKR } \Rightarrow: \text { PEAK }]$ <br> The signal level $\mathrm{L}_{\text {Fsp }}$ is displayed by the level reading of marker 1 . |
| Evaluation: | The frequency response can be calculated as: $\text { Frequency response }=L_{\text {FSP }}-L_{\text {powermeter }}-\operatorname{Ref}_{128 \mathrm{MHz}}$ |

## Checking the Frequency Response with Electronic Attenuator

Test equipment:

```
- Signal generator:
    FSP 3: Section "Measurement Equipment", item 3
    FSP 7: Section "Measurement Equipment", item 3 and 4
    frequency range:
            FSP 3: }10\textrm{MHz}\mathrm{ to 3 GHz
            FSP 7: }\quad10\textrm{MHz}\mathrm{ to }7\textrm{GHz
    maximum level }\geq0\textrm{dBm
- power meter (Section "Measurement Equipment", item 8)
- power sensor :
    FSP 3: Section "Measurement Equipment", item }
    FSP 7 0: Section "Measurement Equipment", item 9 and 10
    frequency range:
            FSP 3: }\quad10\textrm{MHz}\mathrm{ to 3GHz
            FSP 7: }\quad10\textrm{MHz}\mathrm{ to }7\textrm{GHz
    maximum power }\mp@subsup{P}{\operatorname{max}}{}\geq100 \mu
    RSS referred to indicated power
            1 MHz to 1GHz }\leq1.5
            1GHz to 7GHz 
    impedance Z = 50 \Omega
-6-dB divider (Section "Measurement Equipment", item 6)
    frequency range:
            FSP 3: }\quad10\textrm{MHz}\mathrm{ to 3 GHz
            FSP 7: }\quad10\textrm{MHz}\mathrm{ to }7\textrm{GHz
    level imbalance }\mp@subsup{}{}{1}\mathrm{ ) 1 MHz to 1 GHz }\quad\leq0.1\textrm{dB
                            1GHz to 7 GHz }\leq0.2\textrm{dB
    ') If a power splitter with higher level imbalance is used correction
    of the measured frequency response is recommended.
```

| Test setup: | > connect RF output of the signal generator to input of the divider <br> > connect output 1 of the divider to the power sensor / power meter <br> $>$ connect output 2 of the divider to RF input of the FSP |
| :---: | :---: |
| Signal generator settings: | - level 0 dBm <br> - frequency 128 MHz |
| FSP settings: | - [ PRESET] <br> - [ AMPT : RF ATTEN MANUAL : $\mathbf{1 0} \mathbf{d B}$ ] <br> - [ AMPT : NEXT : ELEC ATTEN MANUAL : $\left\{E_{\text {ATt }}\right\}$ : dB ] <br> - [ AMPT : 0 dBm ] <br> - [ SPAN : $\mathbf{1 0 0 ~ k H z ~ ] ~}$ <br> - [ BW : RES BW MANUAL : $\mathbf{1 0} \mathbf{~ k H z}$ ] <br> - [ TRACE : DETECTOR : RMS ] <br> - [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$ ] <br> see table of performance test report for values of $\mathrm{E}_{\text {ATt }}$. |
| Reference measurement: | Determine signal level $\qquad$ <br> > set marker to peak of signal <br> - [ MKR $\Rightarrow$ : PEAK ] <br> The signal level $L_{\text {FSP }}$ is displayed by the level reading of marker 1 . <br> Ref $_{1288 \mathrm{MHz}}=\mathrm{L}_{\text {FSP }}-\mathrm{L}_{\text {powermeter }}$ |
| Measurement <br> Signal generator settings: | - frequency $\quad f_{\text {fresp }}$ <br> see table of performance test report for values of $f_{\text {fresp }}$ |
| Power meter settings: | Determine signal level $\qquad$ . To achive higher accuracy it is recommended to compensate the frequency response of the power sensor. |
| FSP settings: | - [ FREQ : CENTER : \{ffresp\} ] <br> see table of performance test report for values of $f_{\text {fresp. }}$ <br> set marker to peak of signal $-[\mathbf{M K R} \Rightarrow: P E A K]$ <br> The signal level $\mathrm{L}_{\text {FSP }}$ is displayed by the level reading of marker 1 . |
| Evaluation: | The frequency response can be calculated as: <br> Frequency response $=L_{\text {FSP }}-L_{\text {powermeter }}-\operatorname{Ref}_{128 \mathrm{MHz}}$ |


| Checking Non-line | ties with Electronic Attenuator |
| :---: | :---: |
| Third-Order Intercept |  |
| Test equipment: | - 2 signal generators |
|  | FSP 3: Section "Measurement Equipment", item 2 and 3 |
|  | FSP 7: Section "Measurement Equipment", item 2 and 4 |
|  | frequency range: |
|  | FSP 3: 10 MHz to 3 GHz |
|  | FSP 7: $\quad 10 \mathrm{MHz}$ to 7 GHz |
|  | maximum level $\geq 0 \mathrm{dBm}$ |
|  | - 2 attenuators (Section "Measurement Equipment", item 12) |
|  | attenuation $\mathrm{a}_{\text {ATt }}=10 \mathrm{~dB}$ |
|  | frequency range |
|  | FSP 3: $\quad 10 \mathrm{MHz}$ to 3 GHz |
|  | FSP 7: $\quad 10 \mathrm{MHz}$ to 7 GHz |
|  | - 3-dB coupler (Section "Measurement Equipment", item 5) frequency range |
|  | FSP 3: $\quad 10 \mathrm{MHz}$ to 3 GHz |
|  | FSP 7: $\quad 10 \mathrm{MHz}$ to 7 GHz |
|  | decoupling > 12 dB |
| Test setup: | connect RF outputs of the signal generators via $10-\mathrm{dB}$ attenuators to the inputs of the $3-\mathrm{dB}$ coupler |
|  | > connect output of the $3-\mathrm{dB}$ coupler to RF input of the FSP. |
| Signal generator settings: (both generators) | - frequency: generator $1 \quad f_{g 1}=f_{\text {in }}-50 \mathrm{kHz}$ <br> generator $2 \quad f_{g 2}=f_{\text {in }}+50 \mathrm{kHz}$ |
|  | See table of performance test report for values of $f_{\text {in }}$ |
|  | adjust the output level of signal generators for an input level at the FSP of -20 dBm. |
| FSP settings: | - [PRESET] |
|  | - [ AMPT : RF ATTEN MANUAL : 0 dB ] |
|  | - [ AMPT : NEXT : ELEC ATTEN MANUAL : 0 dB] |
|  | - [ AMPT : -10 dBm ] |
|  | - [ SPAN : 500 kHz ] |
|  | - [ BW : RES BW MANUAL : $\mathbf{3} \mathbf{~ k H z}$ ] |
|  | - [ FREQ : CENTER : $\left\{\mathrm{f}_{\mathrm{i}}\right\}$ ] |
|  | See table of performance test report for values of $\mathrm{f}_{\text {in }}$. |
| Measurement | > [ MKR FCTN : TOI] |
| Evaluation: | The third order intercept point (T.O.I) referred to the input signal is is displayed in the marker field by the reading [TOI]. |

## Checking the RF Attenuator (with Option B25)

Test equipment:

Test setup:

Signal generator settings:
Step attenuator settings:
FSP settings:

- Signal generator (Section "Measurement Equipment", item 3) frequency $\quad 128 \mathrm{MHz}$ maximum level $\geq 10 \mathrm{dBm}$
- step attenuator (Section "Measurement Equipment", item 11) frequency $\quad 128 \mathrm{MHz}$ attenuation $\quad 0$ to 80 dB in 5 dB steps attenuation accuracy $<0.1 \mathrm{~dB}$
> connect RF output of the signal generator to RF input of the step attenuator
> connect RF output of the step attenuator to RF input of the FSP
- Frequency
- Level

128 MHz
10 dBm
attenuation $\quad 70 \mathrm{~dB}$

- [ PRESET ]
- [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$ ]
- [ SPAN : 500 Hz ]
- [ BW : RES BW MANUAL : 1 kHz ]
- [TRACE : DETECTOR : RMS ]
- [ BW : VIDEO BW MANUAL : $\mathbf{1 0 0 ~ H z}$ ]
- [ AMPT : RF ATTEN MANUAL : $\mathbf{1 0} \mathbf{d B}$ ]
- [ AMPT : -35 dBm ]

Reference measurement:
set marker to peak of signal

- [ MKR $\Rightarrow$ : PEAK ]
> set reference to peak of signal
- [ MKR : REFERENCE FIXED ]
attenuation $\quad\left\{80 \mathrm{~dB}-\mathrm{a}_{\mathrm{FSP}}\right\}$
see table below for values of $\mathrm{a}_{\mathrm{ATT}}$.
- [ AMPT : RF ATTEN MANUAL : \{afsp\} ]
- [ AMPT : $\left\{-45 \mathrm{dBm}+\mathrm{a}_{\text {FsP }}\right\}$ dBm ]
- [ MKR $\Rightarrow$ : PEAK ]
see table below for values of $a_{\text {FSP }}, a_{\text {ATT }}$ and reference level.
The difference between the level of the input signal of the FSP and the reference (at 10 dB RF-Attenuation) is displayed in the marker field by the reading 'Delta [T1 FXD]'.

| $\mathbf{a}_{\text {ATt }}$ in dB | 80 | 75 | 70 | 65 | 60 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{a}_{\text {fSP }}$ in dB | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 |
| Ref.level in <br> dBm | -45 | -40 | -35 | -30 | -25 | -20 | -15 | -10 | -5 | 0 | 5 | 10 | 15 | 20 | 25 | 30 |

## Checking the electronic Attenuator accuracy

| Test equipment: | - Signal generator (Section "Measurement Equipment", item 3)frequency $\quad 128 \mathrm{MHz}$maximum level $\geq 0 \mathrm{dBm}$- step attenuator (Section "Measurement Equipment", item 11)frequency 128 MHz <br> attenuation 0 to 40 dB in 5 dB steps <br> attenuation accuracy $<0.1 \mathrm{~dB}$ |
| :---: | :---: |
| Test setup: | connect RF output of the signal generator to RF input of the step attenuator <br> > connect RF output of the step attenuator to RF input of the FSP |
| Signal generator settings: | - Frequency 128 MHz <br> - Level 0 dBm |
| Step attenuator settings: | attenuation 40 dB |
| FSP settings: | - [ PRESET ] <br> - [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$ ] <br> - [ SPAN : 500 Hz ] <br> - [ BW : RES BW MANUAL : $\mathbf{1} \mathbf{~ k H z}$ ] <br> - [TRACE : DETECTOR : RMS] <br> - [ BW : VIDEO BW MANUAL : $\mathbf{1 0 0 ~ H z}$ ] <br> - [ AMPT : RF ATTEN MANUAL : $\mathbf{1 0} \mathbf{d B}$ ] <br> - [ AMPT : - $\mathbf{3 0} \mathrm{dBm}$ ] |
| Reference measurement: | > set marker to peak of signal <br> - [ MKR $\Rightarrow$ : PEAK ] <br> > set reference to peak of signal <br> - [ MKR : REFERENCE FIXED ] |
| Measurement: |  |
| Step attenuator settings: | Attenuation $\quad\left\{40 \mathrm{~dB}-\mathrm{a}_{\mathrm{FSP}}\right\}$ <br> See table below for values of a Att . |
| FSP settings: | - [ AMPT : NEXT : ELEC ATTEN MANUAL : \{a $\left.\mathrm{a}_{\text {FSP }}\right\}$ ] <br> - [ AMPT : $\left\{-30 \mathrm{dBm}+\mathrm{a}_{\text {FSP }}\right\}$ dBm ] <br> - [ MKR $\Rightarrow$ : PEAK ] <br> see table below for values of $a_{\text {FSP }}, a_{\text {ATT }}$ and reference level. |
| Evaluation: | The difference between the level of the input signal of the FSP and the reference (at 10 dB RF-Attenuation) is displayed in the marker field by the reading 'Delta [T1 FXD]'. |


| $\mathbf{a}_{\text {ATT }}$ | 40 dB | 35 dB | 20 dB | 25 dB | 20 dB | 15 dB | 10 dB |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{a}_{\text {fSP }}$ | 0 dB | 5 dB | 10 dB | 15 dB | 20 dB | 25 dB | 30 dB |
| Reference level | -30 dBm | -25 dBm | -20 dBm | -15 dBm | -10 dBm | -5 dBm | 0 dBm |

This page is left blank intentionally.

## Performance Test Report FSP

Table 1-1 Performance Test report

| ROHDE \& SCHWARZ | Performance Test Report | Spectrum Analyzer FSP |
| :--- | :--- | :--- |
| Model (FSP-3/7/13/30): | Version 27-Jul-00 |  |
| Order number: 1093.4495. |  |  |
| Serial number: |  |  |
| Test person: |  |  |
| Date: |  |  |
| Sign: |  |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency accuracy Reference oscillator Model w/o Opt. B4 Model with Opt. B4 | Page 1.3 | 9.99999 <br> 9.999999 |  | $\begin{aligned} & 10.00001 \\ & 10.000001 \end{aligned}$ | MHz <br> MHz |  |
| Image frequency rejection, 1st IF, $\mathrm{f}_{\text {in }}$ <br> 11 MHz <br> 100 MHz <br> 1701 MHz <br> 2999 MHz | Page 1.4 | $\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 70 \end{aligned}$ |  |  | dB <br> dB <br> dB <br> dB |  |
| image frequency rejection 2nd IF, $\mathrm{f}_{\text {in }}$ <br> FSP 3 / 7 / 13 / 30 : <br> 100 MHz <br> FSP 7: <br> 3100 MHz <br> 5000 MHz <br> 6999 MHz <br> FSP 13 / 30: <br> 10100 MHz <br> 13100 MHz <br> FSP 30: <br> 20100 MHz <br> 29100 MHz | Page 1.4 | $\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 70 \\ & 70 \\ & 70 \\ & 70 \\ & 70 \\ & 70 \end{aligned}$ |  |  | dB <br> dB |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Image frequency rejection 3rd IF, $\mathrm{f}_{\text {in }}$ <br> FSP 3 / 7 / 13 / 30: <br> 100 MHz <br> FSP 7/ 13 / 30: <br> 3100 MHz | Page 1.4 | 70 <br> 70 | $\qquad$ | - - - - | dB <br> dB |  |
| 1st IF rejection $f_{\text {in }}$ <br> 11 MHz <br> 100 MHz <br> 1701 MHz <br> 2990 MHz | Page 1.5 | $\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 70 \end{aligned}$ |  |  | dB <br> dB <br> dB <br> dB |  |
| $\begin{aligned} & 2^{\text {nd }} \text { IF rejection } \\ & \text { fin }^{\text {in }} \\ & 100 \mathrm{MHz} \end{aligned}$ | Page 1.5 | 70 |  | - | dB |  |
| 3rd-order intercept point, $\mathrm{f}_{\text {in }}$ <br> FSP 3 / 7 / 13 / 30 : <br> 28 MHz <br> 106 MHz <br> 261 MHz <br> 640 MHz <br> 1000 MHz <br> 1700 MHz <br> 2500 MHz <br> 2990 MHz <br> FSP 7 / 13 / 30 : <br> 3100 MHz <br> 5000 MHz <br> 6999 MHz <br> FSP 13 / 30: <br> 7100 MHz <br> 10000 MHz <br> 13000 MHz <br> FSP 30: <br> 15100 MHz <br> 20000 MHz <br> 26000 MHz | Page 1.6 |  |  |  | dBm <br> dBm |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{\text {nd }}$-order harmonic distortion, $f_{\text {in }}$ : <br> FSP 3 / 7 / 13 / 30: <br> 28 MHz <br> 106 MHz <br> 261 MHz <br> 640 MHz <br> 1000 MHz <br> 1490 MHz <br> FSP 7/ 13 / 30: <br> 1510 MHz <br> 2500 MHz <br> 3490 MHz | Page 1.7 | $\begin{aligned} & 25 \\ & 25 \\ & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$ |  |  | dBm <br> dBm |  |
| IF bandwidth switch. level accuracy <br> 100 Hz <br> 300 Hz <br> 1 kHz <br> 3 kHz <br> 10 kHz <br> 30 kHz <br> 100 kHz <br> 300 kHz <br> 1 MHz <br> 3 MHz <br> 10 MHz | Page 1.8 | $\begin{aligned} & -0.1 \\ & -0.1 \\ & -0.1 \\ & -0.1 \\ & - \\ & -0.1 \\ & -0.1 \\ & -0.2 \\ & -0.2 \\ & -0.2 \\ & -0.2 \end{aligned}$ | $\square$ $\qquad$ <br> reference $\qquad$ <br> - $\qquad$ $\qquad$ $\qquad$ <br> - | $\begin{aligned} & +0.1 \\ & +0.1 \\ & +0.1 \\ & +0.1 \\ & - \\ & +0.1 \\ & +0.1 \\ & +0.2 \\ & +0.2 \\ & +0.2 \\ & +0.2 \end{aligned}$ | dB <br> dB |  |
| FFT Bandwidth level accuracy <br> 1 Hz <br> 3 Hz <br> 10 Hz <br> 30 Hz <br> 100 Hz <br> 300 Hz <br> 1 kHz <br> 3 kHz | Page 1.8 | $\begin{aligned} & -0.2 \\ & -0.2 \\ & -0.2 \\ & -0.2 \\ & -0.2 \\ & -0.2 \\ & -0.2 \\ & -0.2 \end{aligned}$ |  | $\begin{aligned} & +0.2 \\ & +0.2 \\ & +0.2 \\ & +0.2 \\ & +0.2 \\ & +0.2 \\ & +0.2 \\ & +0.2 \end{aligned}$ |  |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IF bandwidth <br> Bandwidth: <br> 100 Hz <br> 300 Hz <br> 1 kHz <br> 3 kHz <br> 10 kHz <br> 30 kHz <br> 100 kHz <br> 300 kHz <br> 1 MHz <br> 3 MHz <br> 10 MHz | Page 1.9 | 97 Hz 291 970 2.91 9.7 29.1 90 270 900 2.7 7 |  | 103 309 1030 3.09 10.3 30.9 110 330 1100 3.3 11 | Hz <br> Hz <br> Hz <br> kHz <br> kHz <br> kHz <br> kHz <br> kHz <br> kHz <br> MHz <br> MHz |  |
| IF Bandwidths Shape factor: <br> 100 Hz <br> 300 Hz <br> 1 kHz <br> 3 kHz <br> 10 kHz <br> 30 kHz <br> 100 kHz <br> 300 kHz <br> 1 MHz <br> 3 MHz <br> 10 MHz | Page 1.9 |  |  | $\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$ |  |  |
| Noise Display $\mathrm{f}_{\text {noise: }}$ <br> 9 kHz <br> 95 kHz <br> 999 kHz | Page 1.10 |  |  | $\begin{aligned} & -95 \\ & -100 \\ & -120 \end{aligned}$ | dBm <br> dBm dBm |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Noise Display <br> FSP 3: $f_{\text {noise }}$ : <br> 10.99 MHz <br> 19.99 MHz <br> 49.99 MHz <br> 99.99 MHz <br> 199.9 MHz <br> 499.9 MHz <br> 999.9 MHz <br> 1499 MHz <br> 1999 MHz <br> 2499 MHz <br> 2999 MHz | Page 1.10 |  |  | $\begin{aligned} & -142 \\ & -142 \\ & -142 \\ & -142 \\ & -142 \\ & -142 \\ & -142 \\ & -140 \\ & -140 \\ & -140 \\ & -140 \end{aligned}$ | dBm <br> dBm |  |
| Noise Display <br> FSP 7 / 13 / 30: $f_{\text {noise }}$ <br> 10.99 MHz <br> 19.99 MHz <br> 49.99 MHz <br> 99.99 MHz <br> 199.9 MHz <br> 499.9 MHz <br> 999.9 MHz <br> 1499 MHz <br> 1999 MHz <br> 2499 MHz <br> 2999 MHz | Page 1.10 |  |  | $\begin{aligned} & -140 \\ & -140 \\ & -140 \\ & -140 \\ & -140 \\ & -140 \\ & -140 \\ & -138 \\ & -138 \\ & -138 \\ & -138 \end{aligned}$ | dBm <br> dBm |  |
| Noise Display <br> FSP 7: $f_{\text {noise }}$ : $\begin{aligned} & 3099 \mathrm{MHz} \\ & 3499 \mathrm{MHz} \\ & 3999 \mathrm{MHz} \\ & 4499 \mathrm{MHz} \\ & 4999 \mathrm{MHz} \\ & 5499 \mathrm{MHz} \\ & 5999 \mathrm{MHz} \\ & 6499 \mathrm{MHz} \\ & 6999 \mathrm{MHz} \end{aligned}$ | Page 1.10 |  |  | $\begin{aligned} & -138 \\ & -138 \\ & -138 \\ & -138 \\ & -138 \\ & -138 \\ & -138 \\ & -138 \\ & -138 \end{aligned}$ | dBm <br> dBm |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Noise Display <br> FSP 13 / 30: $f_{\text {noise }}$ | Page 1.10 |  |  | $\begin{aligned} & -135 \\ & -135 \\ & -135 \\ & -135 \\ & -135 \\ & -135 \\ & -135 \\ & -135 \\ & -135 \\ & -132 \\ & -132 \\ & -132 \\ & -132 \\ & -132 \\ & -132 \end{aligned}$ | dBm <br> dBm |  |
| Noise Display <br> FSP 30: $f_{\text {noise }}$ <br> 13999 MHz <br> 14999 MHz <br> 15999 MHz <br> 16999 MHz <br> 17999 MHz <br> 18999 MHz <br> 19999 MHz <br> 20999 MHz <br> 21999 MHz <br> 22999 MHz <br> 23999 MHz <br> 24999 MHz <br> 25999 MHz <br> 26999 MHz <br> 27999 MHz <br> 28999 MHz <br> 29999 MHz | Page 1.10 |  |  | -120 <br> -115 | dBm <br> dBm |  |
| Level accuracy <br> at $128 \mathrm{MHz} .-30 \mathrm{dBm}$ | Page 1.11 | -0.2 | - | +0.2 | dB |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency response RF Attenuation 10 dB <br> FSP 3 / 7/ 13 / 30: <br> $\mathrm{f}_{\text {fresp }}$ <br> 1 MHz <br> 10 MHz <br> 50 MHz <br> 100 MHz <br> 200 MHz <br> 300 MHz <br> 400 MHz <br> 500 MHz <br> 600 MHz <br> 700 MHz <br> 800 MHz <br> 900 MHz <br> 1000 MHz <br> 1500 MHz <br> 2000 MHz <br> 2500 MHz <br> 2990 MHz | Page 1.11 | $\begin{aligned} & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \end{aligned}$ |  | $\begin{aligned} & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \end{aligned}$ | dB <br> dB |  |
| Frequency response <br> RF Attenuation 10 dB <br> FSP 7/ 13 / 30: $\mathrm{f}_{\text {fresp }}$ <br> 3010 MHz <br> 3500 MHz <br> 4000 MHz <br> 4500 MHz <br> 5000 MHz <br> 5500 MHz <br> 6000 MHz <br> 6500 MHz <br> 6990 MHz | Page 1.11 | $\begin{aligned} & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \end{aligned}$ |  | $\begin{aligned} & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \end{aligned}$ | dB <br> dB |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency response RF Attenuation 10 dB $\begin{aligned} & \text { FSP } 13 / 30: f_{\text {fresp }} \\ & 7100 \mathrm{MHz} \\ & 8000 \mathrm{MHz} \\ & 9000 \mathrm{MHz} \\ & 10000 \mathrm{MHz} \\ & 11000 \mathrm{MHz} \\ & 12000 \mathrm{MHz} \\ & 13000 \mathrm{MHz} \\ & 13500 \mathrm{MHz} \end{aligned}$ | Page 1.11 | $\begin{aligned} & -2.5 \\ & -2.5 \\ & -2.5 \\ & -2.5 \\ & -2.5 \\ & -2.5 \\ & -2.5 \\ & -2.5 \end{aligned}$ |  | $\begin{aligned} & +2.5 \\ & +2.5 \\ & +2.5 \\ & +2.5 \\ & +2.5 \\ & +2.5 \\ & +2.5 \\ & +2.5 \end{aligned}$ | dB <br> dB |  |
| Frequency response RF Attenuation 10 dB | Page 1.11 | $\begin{aligned} & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \\ & -3 \end{aligned}$ |  | $\begin{aligned} & +3 \\ & +3 \\ & +3 \\ & +3 \\ & +3 \\ & +3 \\ & +3 \\ & +3 \\ & +3 \\ & +3 \\ & +3 \\ & +3 \\ & +3 \\ & +3 \\ & +3 \\ & +3 \\ & +3 \end{aligned}$ | dB <br> dB |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency response <br> RF Attenuation 20 dB <br> $\mathrm{f}_{\text {fresp }}$ <br> 1 MHz <br> 10 MHz <br> 50 MHz <br> 100 MHz <br> 200 MHz <br> 300 MHz <br> 400 MHz <br> 500 MHz <br> 600 MHz <br> 700 MHz <br> 800 MHz <br> 900 MHz <br> 1000 MHz <br> 1500 MHz <br> 2000 MHz <br> 2500 MHz <br> 2990 MHz | Page 1.11 | $\begin{aligned} & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \end{aligned}$ |  | $\begin{aligned} & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \end{aligned}$ | dB <br> dB |  |
| Frequency response <br> RF Attenuation 40 dB <br> $f_{\text {fresp }}$ <br> 1 MHz <br> 10 MHz <br> 50 MHz <br> 100 MHz <br> 200 MHz <br> 300 MHz <br> 400 MHz <br> 500 MHz <br> 600 MHz <br> 700 MHz <br> 800 MHz <br> 900 MHz <br> 1000 MHz <br> 1500 MHz <br> 2000 MHz <br> 2500 MHz <br> 2990 MHz | Page 1.11 | $\begin{aligned} & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \\ & -0.5 \end{aligned}$ |  | $\begin{aligned} & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \\ & +0.5 \end{aligned}$ | dB <br> dB |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Display linearity RBW 300 Hz <br> a $_{\text {Att }}:$ <br> 10 dB <br> 12 dB <br> 14 dB <br> 16 dB <br> 18 dB <br> 20 dB <br> 22 dB <br> 24 dB <br> 26 dB <br> 28 dB <br> 30 dB <br> 32 dB <br> 34 dB <br> 36 dB <br> 38 dB <br> 40 dB <br> 42 dB <br> 44 dB <br> 46 dB <br> 48 dB <br> 50 dB <br> 52 dB <br> 54 dB <br> 56 dB <br> 58 dB <br> 60 dB <br> 65 dB <br> 70 dB <br> 75 dB <br> 80 dB <br> 85 dB <br> 90 dB <br> 95 dB <br> 100 dB | Page 1.14 | $\begin{aligned} & 9.8 \\ & 7.8 \\ & 5.8 \\ & 3.8 \\ & 1.8 \\ & - \\ & -2.2 \\ & -4.2 \\ & -6.2 \\ & -8.2 \\ & -10.2 \\ & -12.2 \\ & -14.2 \\ & -16.2 \\ & -18.2 \\ & -20.2 \\ & -22.2 \\ & -24.2 \\ & -26.2 \\ & -28.2 \\ & -30.2 \\ & -32.2 \\ & -34.2 \\ & -36.2 \\ & -38.2 \\ & -40.2 \\ & -45.2 \\ & -50.2 \\ & -55.2 \\ & -60.2 \\ & -65.5 \\ & -70.5 \\ & -75.5 \\ & -80.5 \end{aligned}$ |  | $\begin{aligned} & 10.2 \\ & 8.2 \\ & 6.2 \\ & 4.2 \\ & 2.2 \\ & - \\ & -1.8 \\ & -3.8 \\ & -5.8 \\ & -7.8 \\ & -9.8 \\ & -11.8 \\ & -13.8 \\ & -15.8 \\ & -17.8 \\ & -19.8 \\ & -21.8 \\ & -23.8 \\ & -25.8 \\ & -27.8 \\ & -29.8 \\ & -31.8 \\ & -33.8 \\ & \hline-35.8 \\ & -37.8 \\ & \hline-39.8 \\ & -44.8 \\ & -49.8 \\ & \hline-54.8 \\ & -59.8 \\ & -65.5 \\ & -69.5 \\ & -74.5 \\ & -79.5 \end{aligned}$ | dB <br> dB |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Display linearity <br> RBW 300 kHz <br> $\mathrm{a}_{\text {ATt }}$ : <br> 10 dB <br> 12 dB <br> 14 dB <br> 16 dB <br> 18 dB <br> 20 dB <br> 22 dB <br> 24 dB <br> 26 dB <br> 28 dB <br> 30 dB <br> 32 dB <br> 34 dB <br> 36 dB <br> 38 dB <br> 40 dB <br> 42 dB <br> 44 dB <br> 46 dB <br> 48 dB <br> 50 dB <br> 52 dB <br> 54 dB <br> 56 dB <br> 58 dB <br> 60 dB <br> 65 dB <br> 70 dB <br> 75 dB <br> 80 dB | Page 1.14 | $\begin{aligned} & 9.8 \\ & 7.8 \\ & 5.8 \\ & 3.8 \\ & 1.8 \\ & - \\ & -2.2 \\ & -4.2 \\ & -6.2 \\ & -8.2 \\ & -10.2 \\ & -12.2 \\ & -14.2 \\ & -16.2 \\ & -18.2 \\ & -20.2 \\ & -22.2 \\ & -24.2 \\ & -26.2 \\ & -28.2 \\ & -30.2 \\ & -32.2 \\ & -34.2 \\ & -36.2 \\ & \hline-38.2 \\ & -40.2 \\ & \hline-45.5 \\ & -50.5 \\ & -55.5 \\ & -60.5 \end{aligned}$ |  | $\begin{aligned} & 10.2 \\ & 8.2 \\ & 6.2 \\ & 4.2 \\ & 2.2 \\ & - \\ & -1.8 \\ & -3.8 \\ & -5.8 \\ & -7.8 \\ & -9.8 \\ & -11.8 \\ & -13.8 \\ & -15.8 \\ & -17.8 \\ & -19.8 \\ & -21.8 \\ & -23.8 \\ & -25.8 \\ & -27.8 \\ & -29.8 \\ & -31.8 \\ & -33.8 \\ & -35.8 \\ & -37.8 \\ & -39.8 \\ & -44.5 \\ & -49.5 \\ & -54.5 \\ & -59.5 \end{aligned}$ | dB <br> dB |  |
| Attenuator accuracy <br> a ${ }_{\text {AtT }}$ : <br> 0 dB <br> 10 dB <br> 20 dB <br> 30 dB <br> 40 dB <br> 50 dB <br> 60 dB <br> 70 dB | Page 1.15 | $\begin{aligned} & -9.8 \\ & - \\ & +9.8 \\ & +19.8 \\ & +29.8 \\ & +39.8 \\ & +49.8 \\ & +59.8 \end{aligned}$ | reference $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ | $\begin{aligned} & -10.2 \\ & - \\ & +10.2 \\ & +20.2 \\ & +30.2 \\ & +40.2 \\ & +50.2 \\ & +60.2 \end{aligned}$ | dB <br> dB <br> dB <br> dB <br> dB <br> dB <br> dB |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reference level switching accuracy <br> Reference level <br> 0 dBm <br> $-10 \mathrm{dBm}$ <br> $-20 \mathrm{dBm}$ <br> $-30 \mathrm{dBm}$ <br> $-40 \mathrm{dBm}$ <br> $-50 \mathrm{dBm}$ <br> $-11 \mathrm{dBm}$ <br> - 12 dBm <br> $-13 \mathrm{dBm}$ <br> $-14 \mathrm{dBm}$ <br> $-15 \mathrm{dBm}$ <br> $-16 \mathrm{dBm}$ <br> $-17 \mathrm{dBm}$ <br> $-18 \mathrm{dBm}$ <br> $-19 \mathrm{dBm}$ | Page 1.16 | $\begin{aligned} & +9.8 \\ & - \\ & -10.2 \\ & -20.2 \\ & -30.2 \\ & -40.2 \\ & -1.2 \\ & -2.2 \\ & -3.2 \\ & -4.2 \\ & -5.2 \\ & -6.2 \\ & -7.2 \\ & -8.2 \\ & -9.2 \end{aligned}$ | reference $\qquad$ | $\begin{aligned} & +10.2 \\ & - \\ & -9.8 \\ & -19.8 \\ & -29.8 \\ & -39.8 \\ & -0.8 \\ & -1.8 \\ & -2.8 \\ & -3.8 \\ & -4.8 \\ & -5.8 \\ & -6.8 \\ & -7.8 \\ & -8.8 \end{aligned}$ | dB <br> dB |  |
| Phase noise <br> Offset frequency: <br> 100 Hz <br> 1 kHz <br> 10 kHz <br> 100 kHz <br> 1 MHz | Page 1.18 |  |  | $\begin{aligned} & -84 \\ & -100 \\ & -106 \\ & -110 \\ & -120 \end{aligned}$ | $\mathrm{dbc}(1 \mathrm{~Hz})$ <br> dbc (1Hz) <br> dbc (1Hz) <br> dbc ( 1 Hz ) <br> dbc (1Hz) |  |

## Performance Test Report Option FSP-B9

Table 1-2: Performance-Test-Report Option FSP-B9

| ROHDE \& SCHWARZ | Performance Test Report | Option FSP-B9 |
| :--- | :--- | :--- |
| Serial number: |  |  |
| Test person: |  |  |
| Date: |  |  |
| Sign: |  |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Level accuracy output level : $\begin{gathered} 0 \mathrm{dBm} \\ -5 \mathrm{dBm} \\ -10 \mathrm{dBm} \\ -15 \mathrm{dBm} \\ -20 \mathrm{dBm} \\ -25 \mathrm{dBm} \end{gathered}$ | Page 1.21 | $\begin{aligned} & -1 \\ & -6 \\ & -12 \\ & -17 \\ & -23 \\ & -28 \end{aligned}$ |  | $\begin{aligned} & +1 \\ & -4 \\ & -8 \\ & -13 \\ & -17 \\ & -23 \end{aligned}$ | dBm <br> dBm <br> dBm <br> dBm <br> dBm <br> dBm |  |
| Frequency response <br> Tracking Generator <br> Range 9kHz-100kHz <br> output level: $\begin{array}{r} 0 \mathrm{dBm} \\ -10 \mathrm{dBm} \\ -20 \mathrm{dBm} \end{array}$ | Page 1.21 | $\begin{aligned} & -3 \\ & -13 \\ & -23 \end{aligned}$ |  | $\begin{aligned} & +3 \\ & -7 \\ & -17 \end{aligned}$ | dBm <br> dBm dBm |  |
| Frequency response <br> Tracking Generator <br> Range 100kHz-2GHz <br> Output level: $\begin{array}{r} 0 \mathrm{dBm} \\ -10 \mathrm{dBm} \\ -20 \mathrm{dBm} \end{array}$ | Page 1.21 | $\begin{aligned} & -1 \\ & -11 \\ & -21 \end{aligned}$ |  | $\begin{aligned} & +1 \\ & -9 \\ & -19 \end{aligned}$ | dBm <br> dBm dBm |  |
| Frequency response <br> Tracking Generator <br> Range 2 GHz-3 GHz <br> Output level: $\begin{array}{r} 0 \mathrm{dBm} \\ -10 \mathrm{dBm} \\ -20 \mathrm{dBm} \end{array}$ | Page 1.21 | $\begin{aligned} & -3 \\ & -13 \\ & -23 \end{aligned}$ |  | $\begin{aligned} & +3 \\ & -7 \\ & -17 \end{aligned}$ | dBm <br> dBm <br> dBm |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Checking Modulation Tracking Generator I/Q-Modulation <br> Carrier feedthrough Signal 1 GHz Sideband | Page 1.22 |  |  | $\begin{aligned} & -30 \\ & -25 \\ & -25 \end{aligned}$ | dBm dBm dBm |  |
| Checking Modulation Tracking Generator AM-Modulation level difference: | Page 1.23 | -9 |  | -3 | dBc |  |
| Checking Modulation <br> Tracking Generator <br> FM-Modulation <br> Deviation: | Page 1.24 | 18 |  | 22 | MHz |  |

## Performance Test Report Option FSP-B25

Table 1-3 Performance Test Report Option FSP-B25

| ROHDE \& SCHWARZ | Performance Test Report | Option FSP-B25 |
| :--- | :--- | :--- |
| Serial number: |  |  |
| Test person: |  |  |
| Date: |  |  |
| Sign: |  |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Noise Display with Preamplifier (B25) <br> FSP 3 / 7: $\mathrm{f}_{\text {noise }}$ : $\begin{aligned} & 10.99 \mathrm{MHz} \\ & 19.99 \mathrm{MHz} \\ & 49.99 \mathrm{MHz} \\ & 99.99 \mathrm{MHz} \\ & 199.9 \mathrm{MHz} \\ & 499.9 \mathrm{MHz} \\ & 999.9 \mathrm{MHz} \\ & 1499 \mathrm{MHz} \\ & 1999 \mathrm{MHz} \\ & 2499 \mathrm{MHz} \\ & 2999 \mathrm{MHz} \end{aligned}$ | Page 1.25 |  |  | $\begin{aligned} & -152 \\ & -152 \\ & -152 \\ & -152 \\ & -152 \\ & -152 \\ & -152 \\ & -152 \\ & -152 \\ & -150 \\ & -150 \end{aligned}$ | dBm <br> dBm |  |
| Noise Display with <br> Preamplifier (B25) <br> FSP 7: $\mathrm{f}_{\text {noise }}$ <br> 3099 MHz <br> 3499 MHz <br> 3999 MHz <br> 4499 MHz <br> 4999 MHz <br> 5499 MHz <br> 5999 MHz <br> 6499 MHz <br> 6999 MHz | Page 1.25 |  |  | $\begin{aligned} & -150 \\ & -150 \\ & -150 \\ & -150 \\ & -150 \\ & -150 \\ & -150 \\ & -150 \\ & -150 \end{aligned}$ | dBm <br> dBm |  |
| Level accuracy with Preamplifier (B25) at $128 \mathrm{MHz},-30 \mathrm{dBm}$ | Page 1.26 | -0.2 | - | +0.2 | dB |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency response with Preamplifier (B25) <br> FSP 3 / 7: $\mathrm{f}_{\text {fresp }}$ <br> 1 MHz <br> 10 MHz <br> 50 MHz <br> 100 MHz <br> 200 MHz <br> 300 MHz <br> 400 MHz <br> 500 MHz <br> 600 MHz <br> 700 MHz <br> 800 MHz <br> 900 MHz <br> 1000 MHz <br> 1500 MHz <br> 2000 MHz <br> 2500 MHz <br> 2990 MHz | Page 1.26 | $\begin{aligned} & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \end{aligned}$ |  | $\begin{aligned} & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \end{aligned}$ | dB <br> dB |  |
| Frequency response with Preamplifier (B25) <br> FSP 7: $\mathrm{f}_{\text {fresp }}$ <br> 3010 MHz <br> 3500 MHz <br> 4000 MHz <br> 4500 MHz <br> 5000 MHz <br> 5500 MHz <br> 6000 MHz <br> 6500 MHz <br> 6990 MHz | Page 1.26 | $\begin{aligned} & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \end{aligned}$ |  | $\begin{aligned} & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \end{aligned}$ | dB <br> dB |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency response elec. Attenuator (B25) <br> FSP 3 / 7: fresp <br> 10 MHz <br> 50 MHz <br> 100 MHz <br> 200 MHz <br> 300 MHz <br> 400 MHz <br> 500 MHz <br> 600 MHz <br> 700 MHz <br> 800 MHz <br> 900 MHz <br> 1000 MHz <br> 1500 MHz <br> 2000 MHz <br> 2500 MHz <br> 2990 MHz | Page 1.29 | $\begin{aligned} & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \end{aligned}$ |  | $\begin{aligned} & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \end{aligned}$ | dB <br> dB |  |
| Frequency response elec. Attenuator (B25) <br> FSP 7: $\mathrm{f}_{\text {tresp }}$ <br> 3010 MHz <br> 3500 MHz <br> 4000 MHz <br> 4500 MHz <br> 5000 MHz <br> 5500 MHz <br> 6000 MHz <br> 6500 MHz <br> 6990 MHz | Page 1.29 | $\begin{aligned} & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \\ & -2 \end{aligned}$ |  | $\begin{aligned} & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \\ & +2 \end{aligned}$ | dB <br> dB |  |


| Characteristic | included in | Min. value | Actual value | Max. value | Unit | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3rd-order intercept point with elec..Att., $f_{i n}$ <br> FSP 3 / 7: <br> 28 MHz <br> 106 MHz <br> 261 MHz <br> 640 MHz <br> 1000 MHz <br> 1700 MHz <br> 2500 MHz <br> 2990 MHz <br> FSP 7: <br> 3010 MHz <br> 5000 MHz <br> 6990 MHz | Page 1.31 | $\begin{aligned} & 7 \\ & 7 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$ |  |  | dBm <br> dBm |  |
| Attenuator accuracy, $\mathrm{a}_{\text {Att }}$ : <br> 0 dB <br> 5 dB <br> 10 dB <br> 15 dB <br> 20 dB <br> 25 dB <br> 30 dB <br> 35 dB <br> 40 dB <br> 45 dB <br> 50 dB <br> 55 dB <br> 60 dB <br> 65 dB <br> 70 dB <br> 75 dB | Page 1.32 | $\begin{aligned} & -9.8 \\ & -4.8 \\ & - \\ & +4.8 \\ & +9.8 \\ & +14.8 \\ & +19.8 \\ & +24.8 \\ & +29.8 \\ & +34.8 \\ & +39.8 \\ & +44.8 \\ & +49.8 \\ & +54.8 \\ & +59.8 \\ & +64.8 \end{aligned}$ | reference $\qquad$ | $\begin{aligned} & -10.2 \\ & -5.2 \\ & - \\ & +5.2 \\ & +10.2 \\ & +15.2 \\ & +20.2 \\ & +25.2 \\ & +30.2 \\ & +35.2 \\ & +40.2 \\ & +45.2 \\ & +50.2 \\ & +55.2 \\ & +60.2 \\ & +65.2 \end{aligned}$ | dB <br> dB |  |
| Electronic Attenuator accuracy ., $\mathrm{a}_{\text {AtT }}$ <br> 0 dB <br> 5 dB <br> 10 dB <br> 15 dB <br> 20 dB <br> 25 dB <br> 30 dB | Page 1.33 | $\begin{aligned} & -0.2 \\ & +4.8 \\ & +9.8 \\ & +14.8 \\ & +19.8 \\ & +24.8 \\ & +29.8 \end{aligned}$ |  | $\begin{aligned} & +0.2 \\ & +5.2 \\ & +10.2 \\ & +15.2 \\ & +20.2 \\ & +25.2 \\ & +30.2 \end{aligned}$ | dB <br> dB <br> dB <br> dB <br> dB <br> dB <br> dB |  |

## Contents - Chapter 2 "Adjustment"

2 Adjustment ..... 2.1
Service Menu ..... 2.1
Entering the Password ..... 2.2
Alignment Functions ..... 2.2
Manual Adjustment. ..... 2.3
Test Instructions ..... 2.3
Measuring Equipment and Accessories ..... 2.3
Adjusting the level measurement accuracy ..... 2.4
Adjusting the frequency accuracy ..... 2.6
Adjustment of Module Data ..... 2.8
Frequency response correction ..... 2.8

This page is left blank intentionally.

## 2 Adjustment

The following chapter describes the adjustment of the reference sources as well as the softwarecontrolled adjustment of individual module data following module replacement.

The FSP permits the following manual adjustments:

- Adjustment of the 10 MHz reference oscillator which determines the frequency accuracy of the FSP
- Adjustment of the 128 MHz calibration source which determines the level accuracy of the FSP

The adjustment permits to maintain and restore the data integrity of the instrument.
Manual adjustments must be performed at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$ after the instrument has warmed up.

After the adjustment and an internal total calibration has been performed, the FSP is ready for use and offers full data integrity.

## Service Menu

The service functions for adjusting the boards are only useable after the entry of a password to prevent impairment of instrument functionality by unintended data changes.

SETUP menu:


The SERVICE softkey opens a submenu for selection of the service function

## Entering the Password

SETUP SERVICE submenu:


The ENTER PASSWORD softkey allows the entry of a password.
The FSP contains a variety of service functions which, if incorrectly used, can impair the functionality of the analyzer. These functions are normally not accessible and are only usable after the entry of a password.

The password permits change of data which must be modified for calibration or repair of the instrument (for example reference frequency adjustment, level adjustment, general board data). The password is „894129".

IEC/IEEE-bus command: SYST:PASS "<Password>"

## Adjustment Functions

## Caution:

The re-alignment should be carried out by qualified personnel since any change considerably influences the measurement accuracy of the instrument. This is the reason why the softkeys REF FREQUENCY, CAL SIGNAL POWER and SAVE CHANGES can only be accessed after entering a password.

## SETUP SERVICE submenu:



The REF FREQUENCY softkey opens the data input for the adjustment of the reference frequency. Values can be selected between 0 and 255 (without option FSP-B4 OCXO) or between 0 to 4095 (with option FSP-B4 OXCO). They modify the setting of the associated D/A converter. The setting is first stored in the volatile memory. The SAVE CHANGES softkey is used to store it permanently in the nonvolatile memory.
IEC/IEEE-bus command: SENS:ROSC:INT:TUN 155


The CAL SIGNAL POWER softkey opens the data input for the adjustment of the currently set level of the calibration signal ( 0 dBm or -30 dBm , compare INPUT CAL softkey). Values can be selected between 0 and 255 . They modify the setting of the associated D/A converter. The setting is first stored in the volatile memory. The SAVE CHANGES softkey is used to store it permanently in the nonvolatile memory.
IEC/IEEE-bus command:

The SAVE CHANGES softkey stores the modifications in the nonvolatile memory of the instrument. Since these modifications considerably influence the measurement accuracy of the instrument, confirmation by the user is requested before storing.

IEC/IEEE-bus command:

## Manual Adjustment

In the following, the measuring instruments and auxiliary means required for the manual adjustment of the FSP, the appropriate preparations of the instrument as well as the individual adjustments will be explained.

## Test Instructions

- The adjustment of the analyzer must be done after a warm-up time of at least 30 minutes and overall calibration. Only in this case can the compliance with the guaranteed data be ensured.
- Inputs for setting the FSP during measurements are shown as following:
[<KEY>] Press a key on the front panel, eg [SPAN]
[<SOFTKEY $>$ ] Press a softkey, eg [MARKER -> PEAK]
[<nn unit>] Enter a value and terminate by entering the unit, eg [12 $\mathbf{k H z}$ ]
Successive entries are separated by [:], eg. [ BW : RES BW MANUAL : $\mathbf{3} \mathbf{~ k H z}$ ]


## Measuring Equipment and Accessories

Table 2-1 Measuring Equipment and Accessories for manual adjustment of the FSP

| Item | Type of <br> equipment | Specifications recommended | Equipment <br> recommended | R\&S Order <br> No. | Use |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Frequency <br> counter | error $<1 \times 10^{-9}$, <br> frequency range up to 10 MHz | Advantest <br> R5361B <br> with option 23 |  | Frequency Accuracy of <br> Reference Oscillator |
| 2 | Signal generator | frequency range to 1 GHz <br> output level $\quad-10 \mathrm{dBm}$ | SMHU | 0835.8011 .52 | Calibration Source 128 MHz <br> Frequency Accuracy of <br> Reference Oscillator |
| 3 | Power meter |  | NRVD | 0857.8008 .02 | Calibration Source 128 MHz |
| 4 | Power sensor | 1 MHz to 3 GHz <br> RSS $\leq 0.8 \%$ <br> Meter noise $\leq 20 \mathrm{pW}$ | NRV-Z4 | 0828.3618 .02 | Calibration Source 128 MHz |

## Adjusting the level measurement accuracy

| Test equipment: | - Signal generator (Section "Measurement Equipment", item 2): <br> frequency $\quad 128 \mathrm{MHz}$ <br> level $\quad-30 \mathrm{dBm}$ <br> - power meter (Section "Measurement Equipment", item 3) <br> - power sensor (Section "Measurement Equipment", item 4) <br> maximum power $\quad \mathrm{P}_{\max } \geq 1 \mu \mathrm{~W}$ <br> meter noise $\leq 20 \mathrm{pW}$ <br> RSS $\leq 0.8 \%$ referred to indicated power <br> impedance $Z=50 \Omega$ |
| :---: | :---: |
| Power meter settings: | > connect power sensor to power meter and carry out function 'ZERO' when no signal is applied to the power sensor. <br> > connect power sensor to RF output of signal generator. |
| Signal generator settings: | - frequency $\quad 128 \mathrm{MHz}$ <br> - level $\quad-30 \mathrm{dBm} \pm 0.05 \mathrm{~dB}$ <br> > use power meter for exact level adjustment. |
| Test setup: | > connect RF output of the signal generator to RF input of the FSP |
| Overall calibration of FSP: | - [ PRESET] <br> - [ CAL : CAL TOTAL] |
| FSP settings: | [ FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$ ] <br> [SPAN : 15 kHz ] <br> [ BW : RES BW MANUAL : $\mathbf{1 0} \mathbf{~ k H z}$ ] <br> [BW : VID BW MANUAL : 1 kHz ] <br> [ TRACE : DETEKTOR : RMS] <br> [ AMPT : REF LEVEL : -20 dBm ] <br> [ AMPT : RF ATTEN MANUAL : $\mathbf{1 0} \mathbf{d B}$ ] |
| Reference measurement | > set marker to peak of signal <br> - [ MKR SEARCH : PEAK ] <br> $>$ set reference to peak of signal <br> - - [ MKR : REFERENCE FIXED ] <br> $>$ switch internal reference generator to RF input <br> - [ SETUP : SERVICE : INPUT CAL ] <br> > set marker to peak of signal <br> - [ MKR $\Rightarrow$ : PEAK ] |
| Adjustment: | The reading 'Delta [ T 1 FXD ]' displays the difference between the output level of the signal generator and the level of the calibration source. |



FSP settings:

Store value in instrument

Note:

## Caution:

The following re-alignment changes the level of the internal calibration source. Since this adjustment influences the level measurement accuracy of the FSP, it is strongly recommended to perform this adjustment only if the level is not within the tolerance.

```
- [ SETUP : SERVICE : ENTER PASSWORD : }894129 ENTER ]
-[ SETUP : SERVICE : CAL SIGNAL POWER ]
```

> The correction value for the calibration signal level will be displayed in the data entry field. Change the value with the step keys or spin wheel until the marker reading 'Delta [T1 FXD]' displays a value of $0 \pm 0,05 \mathrm{~dB}$.

- [ SETUP : SERVICE : SAVE CHANGES ]
> Confirm message on display with 'YES'. The correction values will be stored in the non volatile memory of the boards.

The changed level of the calibration source will be used with the following total calibration.

- [ CAL : TOTAL CALIBRATION ]
- [ CAL : CALIBRATION RESULTS ]
> Check the calibration results. The calibration must be performed with the status 'PASSED'.


## Adjusting the frequency accuracy

Preparation:

## Note:

The measurement can be performed either with a signal generator at connector RF INPUT (front of FSP) at 1 GHz or at connector EXT REF OUT (rear of FSP) at 10 MHz using a frequency counter For the adjustment, the FSP must be set to internal reference.

The measurement at 1 GHz can be performed with a lower frequency counter resolution in order to achieve a faster adjustment.

## Preparations for adjustment with signal generator:

| Test equipment: | - Signal generator (Section "Measurement Equipment", item 2): <br> frequency $\quad 1000 \mathrm{MHz}$ <br> level $\quad-20 \mathrm{dBm}$ <br> frequency accuracy $<1 \times 10^{-9}$ <br> If the frequency accuracy of the signal generator is not sufficient, adjust the frequency with a frequency counter to the correct frequency before the adjustment. |
| :---: | :---: |
| Test setup: | $>$ connect RF output of the signal generator to RF input of the FSP |
| FSP settings: | - [ PRESET ] <br> - [ FREQ : CENTER : $1 \mathbf{G H z}$ ] <br> - [ SPAN : 0 Hz ] <br> - [ BW : RES BW MANUAL : $\mathbf{1}$ MHz ] <br> - [ AMPT : REF LEVEL : -20 dBm ] <br> - [ AMPT : RF ATTEN MANUAL : $\mathbf{1 0} \mathbf{~ d B}$ ] <br> - [ SETUP : REFERENCE INT / EXT ] <br> toggle to internal reference (INT) |
| Note: | Before the following measurement, the FSP must warm up for at least 30 minutes to heat the reference oscillator. |
| Measurement: | $>$ switch on marker frequency counting: <br> - [ MKR : SIGNAL COUNT ] <br> > Set the necessary resolution: <br> Model without OCXO (Option B4) $1 \mathrm{GHz} \pm 1 \mathrm{kHz}$ <br> - [ MKR : NEXT : CNT RESOL 100 HZ] <br> Model with OCXO (Option B4) $1 \mathrm{GHz} \pm 100 \mathrm{~Hz}$ <br> - [ MKR : NEXT: CNT RESOL 10 HZ] |

## Preparation for adjustment with frequency counter:

| Test equipment: | Frequency counter (Section "Measurement Equipment", item 1): error $<1 \times 10^{-9}$ <br> frequency range up to 10 MHz |
| :---: | :---: |
| Test setup: | connect frequency counter to $10-\mathrm{MHz}$ reference output of the FSP (rear panel) |
| FSP settings: | [SETUP : REFERENCE INT / EXT] <br> toggle to internal reference (INT) |
| frequency counter settings: | > Set the necessary resolution: model without OCXO (option FSP-B4): 1 Hz model with OCXO (option FSP-B4): $\quad 0.1 \mathrm{~Hz}$ |
| Note: | Before the following measurement, the FSP must warm up at least 30 minutes to heat the reference oszillator. |
| Measurement: | > measure frequency with frequency counter: nominal frequency: <br> model without OCXO (option FSP-B4). $\qquad$ $10 \mathrm{MHz} \pm 10 \mathrm{~Hz}$ model with OCXO (option FSP-B4).. $\qquad$ $10 \mathrm{MHz} \pm 1 \mathrm{~Hz}$ |

## Adjustment:



FSP settings:

## Important Note!

The following adjustment changes the frequency of the internal reference source. Since this adjustment influences the frequency accuracy of the FSP, it is strongly recommended to perform this adjustment only if the frequency is not within the tolerance.

- [ SETUP : SERVICE : ENTER PASSWORD : 894129 ENTER ]
- [ SETUP : SERVICE : REF FREQUENCY]
> The correction value for the reference frequency adjust will be displayed in the data entry field. Change the value with the step keys or spin wheel until the frequency counter reading or the marker count reading displays a value within the tolerance.

Store value in instrument -[ SETUP : SERVICE : SAVE CHANGES ]
> Confirm message on display with 'YES'. The correction values will be stored in the non volatile memory of the boards.

## Adjustment of Module Data

All boards of the FSP contain EEPROMS for storage of board data.
In addition to some standard information such as module name, serial number, hardware status and date of manufacture, these stored data items contain important pieces of information within value tables from module pre-testing, e.g. frequency responses for module error data.

In order to match the data stored in EEPROMs on the respective modules to the complete instrument, an adjustment of module data is always performed automatically after replacing a module:
The module header is read from the EEPROMs and compared to the contents of the associated binary file stored on the hard disk. If the header coincides with the data from the binary file it is assumed that the binary file is an exactly mapping EERPOM and the contents of the binary file is loaded in the RAM. After replacing a module, these data usually do no longer coincide. The FSP then detects a board replacement and starts the automatic board adjustment. The complete contents of the new module are read from the EERPOM and copied to the hard disk of the FSP. The existing calibration data (results from the latest total calibration) are deleted and the instruments displays UNCAL. Thus, the FSP must always be calibrated again after replacement of a module (Softkey CAL TOTAL).

## Frequency response correction

With some boards (see chapter 3, section "Module Exchange") an frequency response correction is necessary in addition to the automatic adjustment of module data. This correction is performed by means of a software.
For information when to on perform the frequency response correction see chapter 3, section "Module Replacement".

## Contents - Chapter 3 "Repair"

3 Repair ..... 3.1
Instrument Design and Function Description ..... 3.1
Block diagram ..... 3.1
Description of Block diagram ..... 3.2
Attenuator ..... 3.2
Electronic Attenuator (Option FSP-B25) ..... 3.2
RF to IF Conversion for Frequencies $<3 \mathrm{GHz}$ - Frontend ..... 3.3
RF to IF Conversion for Frequencies > 3 GHz - Microwave Converter ..... 3.4
IF Filter - Module ..... 3.5
Reference Frequency 10 MHz - IF Filter Module ..... 3.6
Reference Frequency 128 MHz - IF-Filter Module ..... 3.6
OCXO Reference (Option FSP-B4) ..... 3.6
Processing of Measured Data - Detector Board ..... 3.7
AF Demodulation (Option FSP-B3) ..... 3.8
Front Panel ..... 3.9
Power Supply Module ..... 3.10
Motherboard ..... 3.10
Module Replacement ..... 3.11
Overview of the Modules ..... 3.12
Replacing the Front Module Controller A90. ..... 3.13
Replacing the Lithium Battery on the Front Module controller ..... 3.16
Replacing the Harddisk A60 ..... 3.19
Replacing the LCD and/or DC/AC Converter in the Front Module ..... 3.20
Replacing the Keyboard Membrane or Mat on the Front Module ..... 3.22
Replacing the Labeling Panel on the Front Module ..... 3.24
Replacing the Floppy Disk Drive A30 ..... 3.25
Replacing the Power Supply A20 ..... 3.26
Replacing the Fan ..... 3.27
Replacing the RF Input Connector (Cable W1) ..... 3.28
Replacing the Motherboard A10 ..... 3.29
Replacing the Module RF Attenuator A40 ..... 3.31
Replacing the Module Key/Probe A80 and Vol./Phone Board A191 (Option FSP-B3) ..... 3.32
Replacing the RF Frontend A100 ..... 3.34
Replacing the Detector A120 ..... 3.35
Replacing the IF-Filter A130 ..... 3.36
Replacing the MW-Converter Unit A160 ..... 3.37
Replacing the AF-Demodulator A190 (Option FSP-B3) ..... 3.38
Replacing the OCXO A200 (Option FSP-B4) ..... 3.39
Replacing the Tracking Generator A170 (Option FSP-B9) ..... 3.40
Replacing the External Generator Control A210 (Option FSP-B10) ..... 3.41
Replacing the LAN-Interface A220 (Option FSP-B16) ..... 3.42
Replacing the Electronic Attenuator A50 (Option FSP-B25) ..... 3.43
Troubleshooting ..... 3.45
Measuring Equipment and Accessories ..... 3.45
Troubleshooting Switch-on Problems ..... 3.46
Troubleshooting Problems with Boot-process ..... 3.47
Contents - Repair ..... FSP
Troubleshooting - Loading Module EEPROMs ..... 3.53
Troubleshooting via Selftest ..... 3.55
Troubleshooting Frontend 1 ..... 3.66
Figures
Fig. 3-1 Block diagramm ..... 3.1
Fig. 3-2 RF to IF Conversion for Frequencies $<3 \mathrm{GHz}$ ..... 3.3
Fig. 3-3 RF to IF Conversion for Frequencies $>3 \mathrm{GHz}$ ..... 3.4
Fig. 3-4 IF Filter ..... 3.5
Fig. 3-5 Reference frequency ..... 3.6
Fig. 3-6 Processing of measured data ..... 3.7
Fig. 3-7 Removing the front module controller ..... 3.14
Fig. 3-8 Installing a new front module controller - position of connectors ..... 3.15
Fig. 3-9 Position of lithium battery and jumper 12 on the front module controller ..... 3.17
Fig. 3-10 Position of connectors on front module controller ..... 3.21
Fig. 3-11 Position of connectors on front module controller ..... 3.23
Fig. 3-12 Pin assignments of PROBE POWER connector ..... 3.33
Tables
Table 3-1 Overview - module replacement ..... 3.12

## 3 Repair

This chapter describes the design of the FSP, simple measures for repair and troubleshooting and, in particular, the replacement of modules. For troubleshooting and diagnosis, a selftest is available, which permits to poll diagnostic voltages of the modules and indicate limit violations.

The firmware update and the installation of options are described in chapter 4 in this servive manual.

## Instrument Design and Function Description

A detailed schematic of the FSP design will be presented in the block diagrams below and in the attachments (see also chapter 5).
The following function description of the instrument refers to the block diagram.

## Block diagram

see also chapter 5, drawings, for a detailed block circuit.


Fig. 3-1 Block diagramm

## Description of Block diagram

The FSP is a triple-conversion superhet receiver (double-conversion for receive frequencies $>3 \mathrm{GHz}$ ) for the frequency range 9 kHz to several GHz , depending on the instrument model. The signals are processed by one RF board (two for models $>3 \mathrm{GHz}$ ), one IF board, one signal detection board and a controller comprising a Pentium industry PC, an I/O interface and a graphic controller. The instrument can be upgraded to meet future requirements by retrofitting options in the analog and digital sections.

The input signal is reduced in level by the attenuator and routed to the RF modules depending on the instrument type. In instruments with option FSP-B25 (electronic attenuator), this module follows in the signal path. In 3-GHz-Models directly follows the RF-Frontend, in the high-frequency models a diplexer is connected in between. The high-frequency signal component $>3 \mathrm{GHz}$ is routed to the microwave converter module following the diplexer. The IF module is the same in all instrument models, likewise the signal path through signal detection to the display.

The internal reference and calibration signals are generated in the frequency and level reference part on the IF-Filter board. Here the 128 MHz reference frequency from the frontend is amplified and made available to the instrument as a reference frequency, and a level-controlled output signal is generated as an internal level reference for instrument calibration.

The tracking generator produces an output signal at the receive frequency with a frequency offset of $\pm 150 \mathrm{MHz}$. The output level of the module is regulated and can be set in the range -30 dBm to 0 dBm . The output signal can be external I/Q-, AM- and FM-modulated.

A detailed description of the modules is given in the following.


#### Abstract

Attenuator The RF signal passes from the input connector via the input switch to the input attenuator, which can be set from 0 to 70 dB in steps of 10 dB . The input signal is applied to the switch as well as a 128 MHz signal which has a close-tolerance level of -30 dBm for calibration purposes or 0 dBm for the selftest of the instrument.


## Electronic Attenuator (Option FSP-B25)

The Electronic attenuator is fitted in the RF signal pass directly behind the input attenuator. It consists of three differnt parts: an 5 dB attenuator, which changes the input attenuation to 5 dB steps; an electronic attenuator, which can be switched from 0 to 30 dB in steps of 5 dB and an switchable preamplifier to reduce the noise figure of the instrument.

## RF to IF Conversion for Frequencies $<\mathbf{3 G H z}$ - Frontend

The frontend converts the receive frequencies in the range 9 kHz to 3 GHz to the low 20.4 MHz IF frequency. The frontend also includes the required local oscillators and associated frequency processing circuits. The unit is made up of two PCBs accommodated in a common housing.


Fig. 3-2 RF to IF Conversion for Frequencies $<3 \mathrm{GHz}$

On the Frontend 1 the input signal in the range 0 to 3 GHz is converted to the first IF of 3476.4 MHz . The input signal passes via the input lowpass to the 1 st mixer. This lowpass at the mixer input provides for suppression of the image frequency (image $=\mathrm{LO}+\mathrm{IF}$ ), such that the conversion remains unambiguous. In the 1st mixer the input signal is converted to an IF of 3476.4 MHz by means of the first LO ( 3476.4 to 6476.4 MHz ). The mixer is followed by a low-noise IF amplifier, which compensates for the loss due to mixing. The signal then passes a filter with a 3-dB bandwidth of approx. 100 MHz for filtering the 1st intermediate frequency. The local oscillator frequency ( 3.4 to 6.6 GHz ) required for this conversion is also generated on this board. This signal is generated by three VCO's, which are synchronized to a low phase noise VCO running from 320 to 352 MHz . The synchronisation is done with a sampling mixer, the resulting IF is variable. A signal with 384 MHz from Frontend 2 is the reference frequency The conversion gain of the Frontend 1 is approx. 0 dB .

Generation of the second and third local oscillator frequency and conversion from the 1st to the 3rd IF are performed on the Frontend 2.
The module has 2 inputs for IF signals which can be selected using a changeover switch.
The signal from Frontend 1 is converted to the 2 nd IF of 404.4 MHz in the 2 nd mixer. The signal is then amplified, the input switch for selection of the input signal is then connected into the signal path.
The signal is routed to a 404.4 MHz filter with a $3-\mathrm{dB}$ bandwidth of 10 MHz for further signal processing. This filter functions as resolution filter, if the resolution bandwidth is set to 10 MHz and it suppresses the image frequency which might occur with the third conversion. The filter is followed by the third mixer, which converts to 20.4 MHz . The conversion gain of the Frontend 2 is approx. 8 dB against 1.IF Input and aprox. 0 dB against $2 . I F$ Input.

On the Frontend 2 is also the reference frequency generation 128 MHz . This signal is generated by an VTXO, which is synchronized to the 10 MHz reference applied from the IF-Filter. The 3rd LO is generated by multiplication of the oscillator signal (*3) and filtering of the comb line, this signal is also used as reference for the Frontend 1. The 2.LO for the second conversion is obtained using an oscillator which is synchronized to an harmonic of the 384 MHz reference.

## RF to IF Conversion for Frequencies > $\mathbf{3} \mathbf{G H z}$ - Microwave Converter

The high frequency models of FSP (frequency range $>3 \mathrm{GHz}$ ) also comprise a microwave converter board. This module converts the analyzer input signals in the range higher than 3 GHz to the second IF of 404.4 MHz . After the attenuator, the input signals are split up in the diplexer to the $<3 \mathrm{GHz}$ and $>3$ GHz signal paths. Signals above 3 GHz are forwarded to the mixer via the YIG filter.


Fig. 3-3 RF to IF Conversion for Frequencies $>3 \mathrm{GHz}$
The first LO converts the input frequency directly to the 404.4 MHz IF (by mixing fundamental and harmonics). For this purpose the LO signal ( 3.4 to 6.6 GHz ) generated in the RF-frontend is amplified to the required LO level.
The basic model is equipped with the necessary interfaces (IF input 404.4 MHz , LO output 3.4 to 6.6 GHz ) for extending the frequency range by simply adding a microwave converter.

## IF Filter - Module

The frontend in the signal path is followed by the IF filter module (analog IF):


Fig. 3-4 IF Filter
FSP offers resolution bandwidths from 1 Hz to 10 MHz in steps of $1 / 3 / 10$. The selection filter at the 2 nd IF of 404.4 MHz in the frontend yields the 10 MHz bandwidth. Selection is not performed at the IF of 20.4 MHz .

The tunable bandwidths 100 kHz to 3 MHz are at the 3 rd IF ( 20.4 MHz ) on the IF filter module. The bandwidths 100 kHz to 3 MHz are provided by 4 decoupled LC circuits.

The IF filter module also comprises circuits for the IF gain (step gain) from 0 to 50 dB in 0.1 dB steps, level correction for all bandwidths and frequency response correction using a variable gain amplifier each.
The IF filters are followed by a log detector to obtain the display dynamic range.
The module also comprises a limiting amplifier (in the log-amp) with a TTL output for the frequency counter.
For the digital realized resolution bandwidths from 1 Hz to 30 kHz , the 20.4 MHz IF signal at the IF filter output is routed to the A/D converter.

## Reference Frequency 10 MHz - IF Filter Module

The reference frequency is generated by an TCXO, the frequency is adjustable by an D/A-Converter. As an other choice an OCXO or an external reference input (REF IN) can be switched on. In every case the active reference will be routed to the reference output.


Fig. 3-5 Reference frequency

## Reference Frequency 128 MHz - IF-Filter Module

This reference is generated on the Frontend an is synchronized to the 10 MHz Reference.
The signal from the Frontend ( 128 MHz Reference) is decoupled and distributed to the Detector and zu other options.
The 128 MHz Calibration signal is generated with a automatic level control. The level is switchable beetween 0 dBm and -30 dBm . The level ist adjustable with an D/A-Converter.
An 4:1 Divider is generating the 32 MHz Clock for the Detector Board (A/D-Converter ).

## OCXO Reference (Option FSP-B4)

The FSP contains as an option FSP-B4 an oven controlled reference oscillator. This OCXO generates a 10 MHz signal with is routed to the IF-Filter board and used as reference signal.

## Processing of Measured Data - Detector Board

The chapters below explain the signal and data paths required for result processing in the various operating modes:


Fig. 3-6 Processing of measured data

## Spectrum Analysis Using an RBW $\mathbf{> 1 0 0} \mathbf{~ k H z}$

In this mode only the analog resolution filters on the IF filter board are used. The signal applied to the A/D converter via the input IF/Video is therefore already a log video signal. The signal is continuously sampled at 32 MHz in the ADC and digitized.
The signal path is now directly routed to DCON.
In the DCON, the data are directly applied to the noise filter. The noise filter serves for limiting the video bandwidth or for averaging the noise content. The signal path is routed to the detector logic where the results are processed, ie peak max, peak min, sample, average and RMS values as well as the number of measured values and quasi-peak values are determined.
With measurement data rates $>1 \mathrm{MHz}$, detector data have to be stored in the measurement RAM because online storage is no longer possible at these high speeds. Upon completion of the sweep, the sweep data are read by the host from the measurement RAM, processed and displayed.

## Spectrum Analysis Using an RBW $\leq 100$ kHz

In this operating mode the resolution bandwidths are generated digital with the aid of the DDC. This IC first mixes its input IF into the baseband using an NCO, and then filters the obtained I/Q signal via a HDF (high decimation filter) and a FIR (finite impulse response) stage. At the end of the DDC processing chain, the I/Q signal in the CORDIC block is split up in magnitude and phase. For signal processing in the DDF, the IF signal from the IF filter module directly represents the linear IF.
For a usual log display of the analyzed spectrum, the magnitude data are logarithmized in the DCON between the DDC interface and the noise filter.
Further signal processing on the detector board is identical to that of operating mode RBW $>100 \mathrm{kHz}$.

## FFT bandwith

In FFT bandwith mode, the synthesizer is set to the desired frequency via the DCON which also generates the tuning voltages for the analog hardware. The signal path is routed via ADC, Corr RAM and DDC. The DDC first mixes the input IF into the baseband using an NCO, then the obtained I/Q signal is filtered in a HDF (high decimation filter) and FIR stage (finite impulse response). The I/Q output data are then stored by the DDC in the I/Q RAM. With data logging completed the I/Q data from the I/Q RAM are transferred to the host via DDC and PCI interface FPGA. The host then performs the FFT for this sweep section.

## Video Bandwidths (VBW)

The video filters of FSP can be adjusted between 1 Hz and 10 MHz in steps of $1 / 3 / 10$. They are designed as a digital lowpass filter for the video signal. The video bandwidth can either be coupled to the resolution bandwidth (= default setting) or manually set to a fixed value.

## Detectors

The FSP uses a detector for the positive peak (peak+) and one for the negative peak value (peak-). In the sample mode, the video signal can also be directly sampled by the A/D converter without a peak detector being required. Quasi-Peak, Average and RMS detectors are available in addition. The RMS detector forms the rms value of the input signal for one point in the display during the measurement time.

## AF Demodulation (Option FSP-B3)

FSP contains as an option FSP-B3 an AM/FM demodulator. In the analyzer mode, the signal at the position of the reference marker during a sweep can be demodulated. In this case FSP stops the sweep for a selectable time and demodulates the input signal. The loudness is adjusted with the volume knob.

## Front Panel

The Front panel consists of an aluminum case panel (part of the FSP frame) and of an mounting plate which accommodates the LCD, the backlight inverter, the keyboard mat with the membrane and the spinwheel. The case panel incorporates the front-module controller

## LCD

The color LCD provides a visible output of any information, measurements etc. to the user. The resolution of the LCD is 640 * 480 pixels (VGA).
The display incorporates a cold cathode tubes for the illumination. The high voltage required for this purpose is generated in an extra DC/AC converter mounted next to the display on the mounting plate and connected both to the display and the controller board via a cable.

## Keyboard

The keyboard consisting of a keyboard mat and a membrane release a contact when the rubber key is pressed. Two LEDs for the STANDBY/ON key (orange for STANDBY/green for ON) are also accommodated on this membrane.
The key evaluation and LED control are effected via a film cable connector on the controller board. Like the control of the two LEDs, it is controlled in a special microprocessor on the controller board by means of a matrix technique. This microprocessor permits to store the status of the STANDBY/ON key when switching off using the power switch.

## Front module controller

The front module controller contains all the necessary components on a board such as processor, memory chips (SIMM modules), I/O devices (ISA bus), lithium battery, IEC-bus controller (IEEE), two serial interfaces (COM1/2), a parallel interface (LPT), LCD graphics controller, external VGA monitor graphics interface (monitor) and an external keyboard connection (keyboard PS/2).
In addition, a floppy controller for an external floppy disk drive and an IDE hard disk controller are integrated on the controller board.

## Hard disk

The hard disk is screwed to the rear of the aluminium case panel and connected to the printed circuit board via a ribbon cable.

## Power Supply Module

The power supply module provides all currents necessary for the operation of the FSP. It can be switched off by means of the power switch on the rear panel.
The power supply module is a primary clocked switching power supply with Power Factor Correction (PFC) and Standby circuit ( +12 V Standby).On the secondary side, it generates DC voltages ( +3.3 V ; +5.2 V; +6 V; +8 V; +12 V; +12 VFAN; +12 V Standby; +28 V; -12 V).
The control signal STANDBY/ON controlled by the front module controller (depending on the operating key STANDBY/ON on the front of the instrument frame) activates the power supply. In standby operation, it only supplies the 12 V -standby voltage for the crystal oscillator and the LED STANDBY on the frontpanel.
The secondary voltages are open-circuit-proof and short-circuit-proof with respect to ground and each other.
An overtemperature protective circuit is additionally installed to prevent overheating. This status is taken to the front module controller via a status signal (OT).

## Fuses

Two fuses are also fitted in the power supply as a means of fire protection.
Note: These fuses are not accessible to the user from outside and are only blown in the case of a serious fault of the power supply (servicing required!).

## Motherboard

The motherboard generates the -6 V supply for the analog boards with an integrated DC/DC-Converter. The Noise source output ( 28 V Noise Source) is also generated on this board.
All external supplys (Probe, Keyboard,...) are protected by polyswitches (current-dependent, selfopening and closing fuses) or electronicly against external short circuit.
On the motherboard a circuit for temperature-dependent instrument fan control is also implemented.

## Probe / Keyboard

The probe / keyboard board is located at the front of the instrument frame and serves for supply and connection of the connectors located at the front panel, the KEYBOARD (PS/2) and a PROBE POWER connector. For connection with motherboard a ribbon cable is used.

## Volume / Phones

This board is only fitted with option FSP-B3 (AF-demodulator).
The volume/phones board is located at the front of the instrument frame and is used to connect the rotary encoder for the Volume setting of the AF-Demodulator and the Headphones connector with the motherboard.
For connection with the motherboard a 10-pin ribbon cable is used.

## Module Replacement

This section describes the service concept and contains the spare parts list and the basic documents for the overall FSP instrument. Replacement of modules is described in detail in Section 3 under "Module Replacement".
Note: $\quad$ The numbers indicated in brackets refer to the position in the list of mechanical parts in Section 5.

These items correspond to the item numbers in the illustrations on board replacement (see also Section 5):
1093.4495 (FSP Basic Model, Its. 1-450),
1093.4537 (Dig. Basic Unit, Its. 500-750),
1093.4708 (Display Unit, Its. 800-950),
1129.6540 (Option FSP-B3, Its. 1000-1080) and
1129.6791 (Option FSP-B4, Its. 1110-1130).

Note: The words "left" and "right" in the manual always refer to the front view of the instrument.


- Please note the safety instructions at the beginning of this manual.
- Disconnect the instrument from the mains before opening the case.
- Protect the replacement site against electrostatic discharge to avoid damage of electronic components of the modules.

The following two methods of ESD protection may be used together or separately:

- Wrist strap with cord to ground connection
- Conductive floor mat and heel strap combination
- Put the instrument on the front handles before loosing the rear feet and the tube to avoid damage of the instrument.
- When mounting the tube take care not to damage or pull off cables.


## Overview of the Modules

Table 3-1 Overview - module replacement

| Module | Required tests and adjustments after replacement |  |  |
| :--- | :--- | :--- | :--- |
|  | Function tests and <br> system error correction | Adjustment | Other |
| Front module controller | SYSTEM MESSAGES/ <br> SELFTEST / CAL |  | DOS/BIOS update |
| Lithium battery | SYSTEM MESSAGES/ <br> SELFTEST / CAL |  | Cold boot |
| Harddisk | SYSTEM MESSAGES/ <br> SELFTEST / CAL |  | Cold boot / FW update |
| LCD / DC/AC-converter |  |  |  |
| Keyboard membrane or mat |  |  |  |
| Labeling panel |  |  |  |
| Floppy disk drive | Check of directories |  |  |

## Replacing the Front Module Controller A90

(see chapter 5, spare part list position (570) and explosion drawing 1093.4495 and 1093.4537)
The front module controller is mounted behind the front panel.

## Opening the Instrument and Removing the Front Panel

$>$ Switch off the instrument and pull the mains plug.
$>$ Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
> Remove volume control knob by pushing off the front hood and loosing the screw, if existing option FSP-B3, AF demodulator.
$>$ Pull off the labeling panel (270) towards the front.
$>$ Unscrew two countersunk screws (610) in the front frame each at the top and at the bottom.
$>$ Remove the frontpanel with keyboard and display (600, 620, 630, 640, 650, 660) to the front and rotate it to the top of the instrument.

## Caution!

Note the connecting cables are still connected to the controller.
> Pull off the connecting cables to the LCD, DC/AC illumination converter, keyboard membrane and spinwheel.
Note: When pulling off the connecting cables be careful with the cable connecting to the keyboard. It is a film cable which can only be disconnected after sliding up the lock of the film cable plug.

## Removing the Front Module Controller

> Unscrew the ten combi screws of the front module controller board and take out the front module controller as follows (see :
Note: $\quad$ The force to disconnect the controller connectors of the motherboard are very high.
The pulling of the controller to the front side will be done with the help of the slits at the bottom side of the mounting plate.
Please push the board with a flat, blunt tool carefully and step by step to the front.

## Caution:

Don't move the tool to deep in the slits and press only against the pc board !.
Pull out the board by preesing at alternate slits.
The board must not be bend!


Fig. 3-7 Removing the front module controller

## Installing the New Front Module Controller and Completing the Instruments

> Carefully plug the new front module controller to the motherboard and fasten it using the ten combi screws (590).
> Carefully insert the cable connectors to the controller board, taking care not to reverse the polarities.


Fig. 3-8 Installing a new front module controller - position of connectors
> Rotate the front panel into the instrument and screw with four countersunk screws (610) in the front frame at the top and at the bottom.

## Caution!

Make sure to route the cables properly
> Install the labeling panel (270).
> Push the 2 front handles (420) on the instrument and mount them with the 4 screws (430).
> Mount volume control knob by fixing the screw and push on the front hood, if existing Option FSP-B3, AF demodulator.

## Putting into Operation

> Connect the instrument to the mains and switch on the instrument power switch. The instrument is now in stand-by mode.
> Insert a a floppy disk with DOS and BIOS-Update in the floppy disk drive.
$>$ Switch ON the FSP and wait until the first Beep. Press Key „FILE". The BIOS-Update starts.
$>$ During the programming of the flash eeprom the FSP must not be switched off.
$>$ Follow the message indicated on the display, then switch off and on the FSP.
> After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SELFTEST ] , then- [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]


## Replacing the Lithium Battery on the Front Module controller

(see chapter 5, spare part list, part item (775) and explosion drawing 1093.4495 and 1093.4537)
The lithium battery is accommodated on the front module controller board behind the front panel.

## Caution!

Lithium batteries must not be exposed to high temperatures or fire.
Keep away from children.
If the battery is replaced improperly, there is danger of explosion. Only replace the battery by R\&S type (see spare part list, pos. 775).

Lithium batteries are hazardous waste and must be disposed of in dedicated containers.
Do not short-circuit the battery!

## Opening the Instrument and Removing the Front Panel

$>$ Switch off the instrument and pull the mains plug.
$>$ Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
> Remove volume control knob by pushing off the front hood and loosing the screw, if existing (Option FSP-B3, AF demodulator)
$>$ Pull off the labeling panel (270) towards the front.
> Unscrew each two countersunk screws (610) in the front frame at the top and at the bottom.
$>$ Remove the frontpanel with keyboard and display (600, 620, 630, 640, 650, 660) to the front and rotate it to the top of the instrument.

## Caution!

Note the connecting cables are still connected to the controller.
> Pull off the connecting cables to the LCD, DC/AC illumination converter, keyboard membrane and spinwheel.
Note: When pulling off the connecting cables be careful with the cable connecting to the keyboard. It is a film cable which can only be disconnected after sliding up the lock of the film cable plug.

## Removing the Lithium Battery

> Unplug jumper JP12.
> Remove the mechanical lock (cable clamp). Carefully unsolder the negative terminal from the soldering lug first using the soldering iron (medium temperature). Then unsolder the positive terminal and take out the battery.
Note: $\quad$ The lithium battery is of the type 3.4 V ( $\varnothing 15 \mathrm{~mm} * 25 \mathrm{~mm})$ with soldering lug terminals (R\&S ordering number 0565.1687.00.)


Fig. 3-9 Position of lithium battery and jumper 12 on the front module controller

## Installing the New Battery and Completing the Instrument

> Shorten the connecting wires of the new battery to a right length and replace with the correct polarity.


## Warning!

Do not short-circuit the battery!
> If necessary, replace the mechanical lock (cable clamp). First solder the positive terminal to the PC board, then the negative terminal.
> Plug jumper JP12 to position 1 and 2 (position before battery replacement) (see Fig. 3-9).
> Rotate the front panel into the instrument and screw with four countersunk screws (610) in the front frame at the top and at the bottom.

## Caution!

Make sure to route the cables properly
> Install the labeling panel (270).
> Push the 2 front handles (420) on the instrument and mount them with the 4 screws (430).
> Mount volume control knob by fixing the screw and push on the front hood, if existing (Option FSP$\mathrm{B} 3, \mathrm{AF}$ demodulator)

## Putting into Operation

> Connect the instrument to the mains and switch on the instrument power switch. The instrument is now in stand-by mode.
> After the change of the battery a cold boot is necessary. Press the decimal point key while switching on the instrument with the ON/STANDBY-Key, until the FSP is beeping.
> After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ], then [ CAL RESULTS ]


## Replacing the Harddisk A60

(see chapter 5, spare part list, item (710), and explosion drawing 1093.4495 und 1093.4537)
The hard disk is incorporated between the front module and the analog boards.
The spare part is already formatted for the FSP and contains the complete software.

## Opening the Instrument and Removing the Harddisk

$>$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the two countersunk screws (260) at the top of the instrument and the two combi screws (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
$>$ Disconnect the ribbon cable (720) at the harddisk.
> Unscrew the two countersunk screws (740) on the harddisk mounting plate (730).
$>$ Take the harddisk (710) completely with the harddisk mounting plate (730 out of the FSP.
> Unscrew the four countersunk screws (750) remove the harddisk and mount a new harddisk to the mounting plate (730).

## Installing the New Hard Disk and Putting into Operation

> Fit the harddisk and the disk holder with two screws (740) to the instrument
Note: Be careful with the lower cover plate locking in the concerning opening.
> Connect the ribbon cable (720) to the harddisk.
Note: Connect cable as drawing 1093.4537 .
$>$ Put the top cover (240) on the instrument and mount it with two countersunk screws (260) and 2 combi screws (250).
$>$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
$>$ Connect the instrument to the mains and switch on the instrument power switch. The instrument is now in stand-by mode.
$>$ After the change of the harddisk a cold boot is necessary. Press the decimal point key while switching on the instrument with the ON/STANDBY-Key, until the FSP is beeping three times.
> After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]


## Replacing the LCD and/or DC/AC Converter in the Front Module

(see chapter 5, spare part list item (600) and (870), and explosion drawing 1093.4495, 1093.4537, 1093.4708)

The LCD is accommodated on the mounting plate together with the associated DC/AC converter. It is connected to the front module controller via cables, which can also be replaced individually. For replacement proceed as follows:

## Opening the Instrument and Removing the Front Module

> Switch off the instrument and pull the mains plug.
> Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
> Remove volume control knob by pushing off the front hood and loosing the screw, if existing (Option FSP-B3, AF demodulator)
> Pull off the labeling panel (270) towards the front.
> Unscrew two countersunk screws (610) in the front frame each at the top and at the bottom.
$>$ Remove the frontpanel with keyboard and display ( $600,620,630,640,650,660$ ) to the front and rotate it to the top of the instrument.

## Caution!

Note the connecting cables are still connected to the controller
> Pull off the connecting cables to the LCD, DC/AC illumination converter, keyboard membrane and spinwheel.
Note: When pulling off the connecting cables be careful with the cable connecting to the keyboard. It is a film cable which can only be disconnected after sliding up the lock of the film cable plug.
> Place the Front Module onto a clean surface.

## Removing the DC/AC Converter

> Pull off the plug of the connecting cable to the DC/AC converter (870).
> Unscrew the two screws (890) and remove the DC/AC-Converter (870) with the spacing pieces (900).

## Removing the LCD

> Unscrew two combi screws (960) and plug off the display cable (950)
> Unscrew the four screws at the display (930) and remove the display.

## Installing the New LCD and/or DC/AC converter and Completing the Instrument

$\rightarrow$ Insert new LCD and/or DC/AC converter in the reverse order, connect all connecting cables in the correct position and replace all screws.
$>$ Place the front panel with the keys on the top of the instrument, with the cables in the right direction to the front modul controller.
> Carefully plug the cable connectors to the controller board without reversing the polarities and replace the mounting plate in the reverse order.


Fig. 3-10 Position of connectors on front module controller
$>$ Rotate the front panel into the instrument and screw with four countersunk screws (610) in the front frame at the top and at the bottom.


## Caution!

Make sure to route the cables properly.
> Install the labeling panel (270).
$>$ Push the 2 front handles (420) on the instrument and mount them with the 4 screws (430).
$>$ Mount volume control knob by fixing the screw and push on the front hood, if existing (Option FSPB3, AF demodulator)
$>$ Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key

## Replacing the Keyboard Membrane or Mat on the Front Module

(see chapter 5, spare part list item (630) and (640), and explosion drawing 1093.4495, 1093.4537)
The keyboard membrane is the contact film for the rubber keys (mat) behind the labeling panel and the keyboard frame. For replacement proceed as follows:

## Opening the Instrument and Removing the Front Panel

> Switch off the instrument and pull the mains plug.
$>$ Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
$>$ Remove volume control knob by pushing off the front hood and loosing the screw, if existing (Option FSP-B3, AF demodulator)
> Pull off the labeling panel (270) towards the front.
$>$ Unscrew each two countersunk screws (610) in the front frame at the top and at the bottom.
$>$ Remove the frontpanel with keyboard and display (600, 620, 630, 640, 650, 660) to the front and rotate it to the top of the instrument.


## Caution!

Note the connecting cables are still connected to the controller .
> Pull off the connecting cables to the LCD, DC/AC illumination converter, keyboard membrane and spinwheel.

Note: When pulling off the connecting cables be careful with the cable connecting to the keyboard. It is a film cable which can only be disconnected after sliding up the lock of the film cable plug.

## Removing the membrane

$>$ Place the mounting plate onto the surface with the keyboard frame pointing upwards
$>$ Pull off the knob (650) of the spinwheel.
> Unscrew the 10 countersunk screws (660) and remove the keyboard frame (620).
$>$ The keyboard membrane (640) as well as the mat (630) is now accessible.

## Installing the New membrane and Completing the Instrument

> Put the new mat (630) into the keyboard frame (620).
Note: The pins of the mat must be pressed in the wholes at the keyboard frame.
> Locate the new keyboard membrane (640) on the back of the mat (630).
Note: Push the foil cable of the membrane through the slit in the mounting panel.
The membrane must be positioned to let the pins of the mat come trough the holes in the membrane.
> Locate the mounting plate with the display (600) onto the membrane (640).
Note: $\quad$ The mounting plate must be positioned to let the pins of the mat come trough the holes in the mounting plate (800).
> Press the front panel together, turn the keys to the top and screw ten countersunk screws (660) into the keyboard frame.
> Place the front panel with the keys on the top of the instrument, with the cables in the right direction to the front modul controller.
> Carefully plug the cable connectors to the controller board without reversing the polarities and replace the mounting plate in the reverse order.


Fig. 3-11 Position of connectors on front module controller
> Rotate the front panel into the instrument and screw with four countersunk screws (610) in the front frame at the top and at the bottom.


## Caution!

Make sure to route the cables properly.
> Install the labeling panel (270).
> Push the 2 front handles (420) on the instrument and mount them with the 4 screws (430).
> Mount volume control knob by fixing the screw and push on the front hood, if existing (Option FSPB3, AF demodulator)
> Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key

## Replacing the Labeling Panel on the Front Module

(see chapter 5, spare part list item (270/280), and explosion drawing 1093.4495)
The labeling panel is the outer front panel which carries the labeling of all the parts on the front side of the FSP. Every model has its own labeling panel (270, 280, 290)
$>$ Switch off the instrument and pull the mains plug.
$>$ Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
$>$ Remove volume control knob by pushing off the front hood and loosing the screw, if existing (Option FSP-B3, AF demodulator)
$>$ Pull off the labeling panel (270) towards the front.
> Install the New labeling panel and tighten all screws.
> Complete the instrument.
$>$ Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key

## Replacing the Floppy Disk Drive A30

(see chapter 5, , spare part list item (670), and explosion drawing 1093.4495, 1093.4537)

## Opening the Instrument and Removing the Floppy Disk Drive

$>$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
> Unscrew the two countersunk screws (260) at the top of the instrument and the two combi screws (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
$>$ Remove two screws (700) at the fan side of the FSP and carefully pull out the Floppy Disk Drive (670) with Floppy mounting plate (680) to the upper side.

Note: $\quad$ The connecting cable is still connected to the motherboard .
$>$ Disconnect the cable at the floppy disk drive .
Note: Please take note of the correct direction of the cable (contact side)

## Install the New Floppy Disk Drive and Completing the Instrument

> Unscrew the three combi screws (700) and remove the floopy disk from the mounting plate (680) and mount a new disk drive (670) to the floppy mounting plate (680).
$>$ Connect the foil cable (690) to the disk drive (Note the contact side of the cable).
$>$ Insert the floppy mounting plate (680) and mount it to the fan side with two combi screws (700).
Note: Please mount the floppy disk drive in the middle of the front panel break out.
$>$ Put the top cover (240) on the instrument and mount it with two countersunk screws (260) and 2 combi screws (250).
$\Rightarrow$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
$>$ Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key

## Function Test

$>$ Instrument is booting and the firmware is starting.
> Insert $31 / 2$ " Disk with any files.
$>$ Press key ,FILE‘ , then Softkey ,File Manager‘ and ,Edit Path‘.
> Enter " a " and ": " and confirm with "Enter"-key.
> The file structure of the inserted disk must be displayed.

## Replacing the Power Supply A20

(see chapter 5, spare part list item (550), and explosion drawing 1093.4537)
The power supply is fitted at the rear of the instrument frame of the FSP.

## Removing the Power Supply

$>$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the ten screws (560) at the rear of the power supply.
$>$ Pull out the power supply approx. 20 mm towards the rear, slightly tilt towards the bottom and then pull out completely.

## Installing the New Power Supply

> Install the New power supply in the reverse order.
Note: Make sure that the 96-contact connector to the MOTHERBOARD locks in place correctly.
> Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
$>$ Connect the instrument to the mains and switch on.
> After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
$>$ Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ], then [ CAL RESULTS ]


## Replacing the Fan

(see chapter 5, spare part list item (15), and explosion drawing 1093.4495)
The fan is fitted at the right side of the frame.

## Opening the Instrument and Removing the Fan

$>$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the two countersunk screws (260) at the top of the instrument and the two combi screws (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
$>$ Disconnect the fan cable at the motherboard connector X35 (FAN) .
$>$ Unscrew the four screws off the FAN (15) and remove the fan.

## Installing the New Fan and Completing the Instrument

$>$ Connect the fan cable at the motherboard connector X35 (FAN)
$>$ Insert the new fan and mount it to the frame with 4 pieces fan screws.
Note: $\quad$ Please note the direction of the airflow printed on the fan. The fan must blow the cold air into the instrument.

Make sure to route the cables with enough space to the fan.
$>$ Put the top cover (240) on the instrument and mount it with two countersunk screws (260) and 2 combi screws (250).
$\Rightarrow$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
$>$ Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key

## Replacing the RF Input Connector (Cable W1)

(see chapter 5, spare part list item (295), and explosion drawing 1093.4495)
The RF input connector is fitted at the right lower side of the front panel.
Depending on the frequency range two diffrent models of the connector are available.

## Opening the Instrument and Removing the Cable W1

> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
$>$ Remove volume control knob by pushing off the front hood and loosing the screw, if existing (Option FSP-B3, AF demodulator)
> Pull off the labeling panel (270) towards the front.
$>$ Remove three countersunk screws (70) at the frame and 1 countersunk screw (70) at the connector mounting plate (60).
> Unscrew the cable W1 (295) to 7 GHz or W1 (315) to 30 GHz at the RF attenuator (20) or (30).
> Remove the connector mounting plate (60) together with W1 and modul Probe/Key (50) to the front.
Note: $\quad$ The modul Probe/Key (50) is connected via a ribbon cable to the motherboard X80.
$>$ Unscrew the four countersunk screws (350) and remove cable W1 together with mounting plate (330) or (340).

## Installing the New Cable and Completing the Instrument

$>$ Put the mounting plate (330) or (340) onto the new cablel W1 and mount the connector with four countersunk screws (350), move the mounting plate (60) back to the instrument and connect cable W1 (295) or (315) to the input of RF attenuator.
$>$ Screw three countersunk screws (70) to the instrument frame and one countersunk screw (70) to the mounting plate (60).
$>$ Install the labeling panel (270).
$>$ Push the 2 front handles (420) on the instrument and mount them with the 4 screws (430).
$>$ Mount volume control knob by fixing the screw and push on the front hood, if existing (Option FSPB3, AF demodulator)
$>$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
$>$ Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
$>$ Start selftest and check results:

- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]
> Check frequency response with chapter 1 and do a correction if necessary.


## Replacing the Motherboard A10

(see chapter 5, spare parts list item (510) and explosion drawing 1093.4495, 1093.4537)
The motherboard is fitted from the bottom side.

## Opening the Instrument and Removing the Motherboard

$\rightarrow$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the two countersunk screws (260) at the top of the instrument and the two combi screws (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
> Place the instrument on the left side frame and loosen all connecting cables to the boards.
> Push out all boards to the top side of the instrument.
Note: $\quad$ The boards can be moved up by pressing carefully from the downside through the connector wholes in the motherboard against the boards.
> Removing the power supply(550).
Unscrew the ten screws (560) at the rear of the power supply.
Pull out the power supply approx. 20 mm towards the rear, slightly tilt towards the bottom and then pull out completely.
$>$ Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
$>$ Remove volume control knob by pushing off the front hood and loosing the screw, if existing (Option FSP-B3, AF demodulator)
$>$ Pull off the labeling panel (270) towards the front.
> Unscrew each two countersunk screws (610) in the front frame at the top and at the bottom.
$>$ Remove the frontpanel with keyboard and display (600, 620, 630, 640, 650, 660) to the front and rotate it to the top of the instrument.

## Caution:

Note the connecting cables are still connected to the controller .
> Pull off the connecting cables to the LCD, DC/AC illumination converter, keyboard membrane and spinwheel.
Note: When pulling off the connecting cables be careful with the cable connecting to the keyboard. It is a film cable which can only be disconnected after sliding up the lock of the film cable plug.
$>$ Remove the front modul controller (see chapter: Replacing the Front Module Controller A90)
$>$ Remove the screws of all motherboard connectors at the rear panel. Unscrew the bolts (530) at the "COM" and „LPT" ports and (540) aa „Monitor" port. Unscrew the nuts at „Noise Source"and „Ext. Trig" connectors and the bolts at the "IEC"-port.
Note: Don't change the bolts of the "Monitor" and the "LPT" or "COM"!
> Pull off the connecting cables at the motherboard (RF-Attenuator, fan, Floppy, Probe/Key, rear panel, ....).
> Unscrew five combi screws in bottom side of the Motherboard
$>$ Move the Motherboard (510) carefully to th front panel (ca. 15 mm ) and lift it out of the instrument to the downside.

## Installing the New Motherboard and Completing the Instrument

> Insert the Motherboard into the instrument in the reverse order.
Note: Please move the Motherboard carefully to the rear panel without causing damage to the parts on the board.
Connect all cables (see label on cable for position).
> Insert the Frontmodulcontroller, Frontpanel, power supply, boards and cables, top cover, tube and rear panel feet in reverse order.
$>$ Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
$>$ After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]
$>$ Store the serial number of the instrument to the Eeprom:
- [ SETUP : SERVICE : ENTER PASSWORD „30473035"] , then input serial number of the instrument in HW-Info table (see also Chapter 2, Section "Automatic Adjustment of Module Data").


## Replacing the Module RF Attenuator A40

(see chapter 5, spare parts list item (20/30) and explosion drawing 1093.4495)
The RF attenuator is fitted at the bootom side behind the RF input connector. There are different models of the attenuator for instruments to $7 \mathrm{GHz}(20)$ and to $30 \mathrm{GHz}(30)$.

## Opening the Instrument and Removing the RF Attenuator

$>$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
> Place the instrument on the left side and unscrew the RF cable or the diplexer (150) at the RF output of the RF Attenuator.
$>$ Unscrew the two combi screws (40) at the right frame.
Note: The RF Attenuator will only be fixed with the RF cables at the front.
$>$ Disconnect RF-cable W1 (295) or (315) at the input of the RF Attenuator.
> Move carefully out the RF Attenuator and disconnect the flexible RF-cable at the input.
$>$ Disconnect ribbon cable at motherboard connector X40.

## Installing the New RF Attenuator and Completing the Instrument

$>$ Connect the ribbon cable of the new RF Attenuator (20) or (30) at motherboard connector X40.
$>$ Connect the flexible RF-cable at the input of new RF Attenuator (see label on cable)
$>$ Move the new RF Attenuator in the instrument and connect cable W1 (295) or (315) at the input.
$>$ Screw the two combi screws (40) at the right frame in the RF-Attenuator.
$>$ Screw the RF cable or the diplexer (150) at the RF output of the RF Attenuator.
$\Rightarrow$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
$\Rightarrow$ Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
> After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ], then [ CAL RESULTS ]
> Check frequency response with chapter 1 and make a correction if necessary.


## Replacing the Module Key/Probe A80 and Vol./Phone Board A191 (Option FSP-B3)

(see chapter 5, spare parts list item (50 and 1040) and explosion drawing 1093.4495, 1129.6450)
The boards are fitted behind the front panel connectors Keyboard, Probe, Headphone and the volume control knob.

## Opening the Instrument and Removing the Boards

$>$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
$>$ Remove volume control knob by pushing off the front hood and loosing the screw, if existing (Option FSP-B3, AF demodulator)
$>$ Pull off the labeling panel (270) towards the front.
> Remove three countersunk screws (70) at the frame and 1 countersunk screw (70) at the connector mounting plate (60).
> Unscrew the cable W1 (295) to 7GHz or W1 (315) to 30 GHz at the RF attenuator (20) or (30).
$>$ Remove the mounting plate (60) completely with W1 and Probe/Key board (50) and option Vol./Phone Board (1040) to the front side.
Note: $\quad$ The Probe/Key (50) and Vol./Phone boards (1040) are connected eith a ribbon cable to the motherboard X80 und X81 angesteckt.
$>$ Disconnect the ribbon cable at the motherboard connector X80 and X81.
$>$ Unscrew the three countersunk screws (55) and remove the board Key-Probe (50).
$>$ Unscrew the three countersunk screws (1060) and remove the board Vol./Phone Board (1040) from mounting plate (60).
Unscrew the combi screw (1055) and the nut of the volume control at the mounting plate (1050) and remove Vol./Phone Board (1040) .

## Installing the New Modules and Completing the Instrument

> Mount the new Key-Probe board (50) with three countersunk screws (55) to mounting plate (60).
> Mount the new Vol./Phone Board (1040) with the nut of the volume control and one countersunk screw (1055) to the mounting plate (1050). Mount Vol./Phone board (1040) with three countersunk screws (1060) to mounting plate (60).
> Connect the ribbon cable at motherboard-connector X80 and X81.
> Move the complete mounting plate (60) carefully back in the instrument.


## Caution

Make sure to route the cables properly.
> Connect RF-cable W1 (295) or (315) at the input of the RF Attenuator (20) or (30).
> Screw three countersunk screws (70) to the instrument frame and one countersunk screw (70) to the mounting plate (60).
> Install the labeling panel (270).
> Push the 2 front handles (420) on the instrument and mount them with the 4 screws (430).
> Mount volume control knob by fixing the screw and push on the front hood, if existing (Option FSPB3, AF demodulator)
> Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).

## Function Test

> Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
> Measure the output voltage at the Probe-connector (see Fig. 3-12).
$>$ Connect a keyboard to the instrument and test the function.
> If the option FSP-B3 (AF-Demodulator) is fitted, test the function of headphone connector and volume control. Press the Key MKR, press Softkey MARKER DEMOD. Noise can be heard in the loudspeaker, the volume can be changed with the VOLUME knob at the front panel. Connect a headphone to the AF OUTPUT at the frontpanel, the loudspeaker must be switched off and the noise can be heared in the headphone.


| Pin | Signal |
| :--- | :--- |
| 1 | GND |
| 2 | -12.6 V |
| 3 | +15 V |

Fig. 3-12 Pin assignments of PROBE POWER connector

## Replacing the RF Frontend A100

(see chapter 5, spare part list item (100), and explosion drawing 1093.4495)
The RF Frontend is installed in the middle of the instrument .

## Opening the Instrument and Removing the Board

> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the two countersunk screws (260) at the top of the instrument and the two combi screws (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
$>$ Place the instrument on the left side frame and loosen all connecting cables to the board.
> Push out board to the top side of the instrument.
Note: The board can be moved up by pressing carefully from the downside through the connector wholes in the motherboard against the board.

## Installing the New RF Frontend Module and Completing the Instrument

$>$ Plug the new board into the instrument and reconnect all cables to the board.
Note: Please refer to the cable wiring drawing on the motherboard.
$>$ Put the top cover (240) on the instrument and mount it with two countersunk screws (260) and 2 combi screws (250).
$>$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
$>$ Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
$>$ After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
$>$ Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ], then [ CAL RESULTS ]
$>$ Check frequency response with chapter 1 and make a correction if necessary, using the correction software.


## Replacing the Detector A120

(see chapter 5, spare part list item (110), and explosion drawing 1093.4495)
The board is installed in the front part of the instrument.

## Opening the Instrument and Removing the Board

$>$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
> Unscrew the two countersunk screws (260) at the top of the instrument and the two combi screws (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
$>$ Place the instrument on the left side frame and loosen all connecting cables to the board.
> Push out board to the top side of the instrument.
Note: $\quad$ The board can be moved up by pressing carefully from the downside through the connector wholes in the motherboard against the board.

## Installing the New Module and Completing the Instrument

> Plug the new board into the instrument and reconnect all cables to the board.
Note: Please refer to the cable wiring drawing on the motherboard.
$>$ Put the top cover (240) on the instrument and mount it with two countersunk screws (260) and 2 combi screws (250).
$>$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
$>$ Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
> After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results: - [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]


## Replacing the IF-Filter A130

(see chapter 5, spare part list item (120), and explosion drawing 1093.4495)
The board is installed in the middle of the instrument.

## Opening the Instrument and Removing the Board

> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the two countersunk screws (260) at the top of the instrument and the two combi screws (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
$>$ Place the instrument on the left side frame and loosen all connecting cables to the board.
> Push out board to the top side of the instrument.
Note: The board can be moved up by pressing carefully from the downside through the connector holes in the motherboard against the board.

## Installing the New Module and Completing the Instrument

> Plug the new board into the instrument and reconnect all cables to the board.
Note: Please refer to the cable wiring drawing on the motherboard.
$>$ Put the top cover (240) on the instrument and mount it with two countersunk screws (260) and 2 combi screws (250).
$>$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
> After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
$>$ Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ], then [ CAL RESULTS ]
$>$ Check frequency accuracy and the calibration source level with chapter 1 and readjust with chapter 2 if necessary.


## Replacing the MW-Converter Unit A160

(see chapter 5, spare part list item (130 to 140), and explosion drawing 1093.4495)
The board is installed in the middle of the instrument.

## Opening the Instrument and Removing the Board

$>$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the two countersunk screws (260) at the top of the instrument and the two combi screws (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
$>$ Place the instrument on the left side and loosen all cables at the bottom to the board.
> Push out board to the top side of the instrument.
Note: $\quad$ The board can be moved up by pressing carefully from the downside through the connector wholes in the motherboard against the board.

## Installing the New Module and Completing the Instrument

> Plug the new board into the instrument and reconnect all cables to the board.
Note: $\quad$ Please refer to the cable wiring drawing on the motherboard.
$>$ Put the top cover (240) on the instrument and mount it with two countersunk screws (260) and 2 combi screws (250).
$>$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
$>$ Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
$>$ After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]
$>$ Start frequency correction of the YIG-Filter (external correction software).
$>$ Start frequency response correction of all frequency ranges (external correction software).


## Replacing the AF-Demodulator A190 (Option FSP-B3)

(see chapter 5, spare part list item (1000), and explosion drawing 1093.4495)
The board is fitted the front part of the instrument.

## Opening the Instrument and Removing the Board

> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the two countersunk screws (260) at the top of the instrument and the two combi screws (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
$>$ Place the instrument on the left side frame and loosen all connecting cables to the board.
> Push out board to the top side of the instrument.
Note: $\quad$ The board can be moved up by pressing carefully from the downside through the connector wholes in the motherboard against the board.

## Installing the New Module and Completing the Instrument

$>$ Plug the new board into the instrument and reconnect all cables to the board.
Note: $\quad$ Please refer to the cable wiring drawing on the motherboard.
$>$ Put the top cover (240) on the instrument and mount it with two countersunk screws (260) and 2 combi screws (250).
$>$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
$>$ Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
> After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
$>$ Test the function of headphone connector and volume control.


## Replacing the OCXO A200 (Option FSP-B4)

(see chapter 5, spare part list item (1100), and explosion drawing 1093.4495 and 1129.6791)
The board is fitted in the front part behind the front module .

## Opening the Instrument and Removing the Board

$>$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the two countersunk screws (260) at the top of the instrument and the two combi screws (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
$>$ Place the instrument on the left side frame and loosen all connecting cables to board.
> Push out board to the top side of the instrument.
Note: $\quad$ The board can be moved up by pressing carefully from the downside through the connector wholes in the motherboard against the board.

## Installing the New Module and Completing the Instrument

> Plug the new board into the instrument and reconnect all cables to the board.
Note: Please refer to the cable wiring drawing on the motherboard.
$>$ Put the top cover (240) on the instrument and mount it with two countersunk screws (260) and 2 combi screws (250).
$>$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
> After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]
$>$ Check frequency accuracy with chapter 1 and readjust with chapter 2 if necessary.


## Replacing the Tracking Generator A170 (Option FSP-B9)

(see chapter 5, spare part list item (1500), and explosion drawing 1093.4495 and 1129.7069)
The board is fitted in the back part of the instrument in front of the power supply.

## Opening the Instrument and Removing the Board

$\rightarrow$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the two countersunk screws (260) at the top of the instrument and the two combi screws (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
$>$ Place the instrument on the left side frame and loosen all connecting cables to the board.
> Push out board to the top side of the instrument.
Note: $\quad$ The board can be moved up by pressing carefully from the downside through the connector wholes in the motherboard against the board.

## Installing the New Module and Completing the Instrument

$>$ Plug the new board into the instrument and reconnect all cables to the board.
Note: Please refer to the cable wiring drawing on the motherboard.
$>$ Put the top cover (240) on the instrument and mount it with two countersunk screws (260) and 2 combi screws (250).
$>$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
$>$ Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
> After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
$>$ Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]
> Connect tho output of the Tracking Generator with the RF-Input (use short low attenuation cable) and switch on the Generator : [ NETWORK ]. A continous signal is displayed on the screen.


## Replacing the External Generator Control A210 (Option FSP-B10)

(see chapter 5, spare part list item (1600), and explosion drawing 1093.4495 and 1129.7298)
The board is fitted in the front part of the instrument .

## Opening the Instrument and Removing the Board

$>$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the two countersunk screws (260) at the top of the instrument and the two combi screws (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
> Push out board to the top side of the instrument.

## Installing the New Module and Completing the Instrument

$>$ Plug the new board into the instrument.
$>$ Put the top cover (240) on the instrument and mount it with two countersunk screws (260) and 2 combi screws (250).
$\Rightarrow$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
> After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]


## Replacing the LAN-Interface A220 (Option FSP-B16)

(see chapter 5, spare part list item (1200), and explosion drawing 1093.4495 and 1129.8071)
The board is fitted in the front part of the instrument .

## Opening the Instrument and Removing the Board

$\rightarrow$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
$>$ Unscrew the two countersunk screws (260) at the top of the instrument and the two combi screws (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
> Disconnect LAN-Interface-cable W32 (1250) at the top side of the board.
> Push out board to the top side of the instrument.

## Installing the new Module and Completing the Instrument

> Plug the new board into the instrument.
> Connect LAN-Interface-cable W32 (1250) at the top side of the board.
$>$ Put the top cover (240) on the instrument and mount it with two countersunk screws (260) and two combi screws (250).
$>$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
$>$ Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
> After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]


## Replacing the Electronic Attenuator A50 (Option FSP-B25)

(see chapter 5, spare part list item (1400), and explosion drawing 1093.4495 and 1129.7800)
The electronic Attenuator is fitted behind the RF attenuator under the fan.

## Opening the Instrument and Removing the electronic Attenuator

$>$ Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
> Place the instrument on the left side frame and loosen RF cable W28 (1430/1440) at the electronic Attenuator output.
> Unscrewn 4 countersunk screws (1460) at the right frame.
Note: The elect. Attenuator will only be fixed with the RF cables at the front.
$>$ Fix the electronic Attenuator and disconnect RF-cable W29 (1420) at the output of the Attenuator.
$>$ Move carefully out the RF Attenuator and disconnect the ribbon cable at the electronic attenuator.

## Installing the new Electronic Attenuator

> Connect (only loose) cable W29 (1420) at the new Electronic Attenuator.
Note: Label X3 shows to the electronic Attenuator.
$>$ Connect the ribbon cable (W50) at the new Attenuator.
> Move the new Electronic Attenuator in the instrument and connect cable W29 (1420) to the output of the Attenuator (20).
$>$ Screw the four combi screws (1460) at the right frame in the Electronic Attenuator.
$>$ Fix the RF cable (1420) at the output of the Attenuator (20) and the Electronic Attenuator.
3 GHz - Model (1093.4495.03)
$>$ Connect cable W28 (1430) between Electronic Attenuator and the Frontend (100) .

## 7 GHz - Model (1093.4495.07)

> Connect cable W28 (1440) between Electronic Attenuator and the MW-Converter (130).

## Completing the Instrument

$>$ Push the tube (410) on the instrument and mount the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the instrument power switch and switch on the instrument with the ON/STANDBY-Key
> After starting the instrument check for system messages:

- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results: - [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
$>$ Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]
$>$ Check frequency response with chapter 1 and make a correction if necessary.

This page is left blank intentionally

## Troubleshooting

Malfunctions may have simple causes but also may be caused by faulty components.
These troubleshooting instructions allow for locating the error causes down to board level and make the instrument ready for use again by means of board replacement.

We recommend to ship the instrument to our experts in the service centers (cf. address list) for module replacement and further error elimination.

## Warning!

Do not plug or unplug boards prior to disconnecting them from ac supply!
Be careful not to cause short-circuits when measuring voltages!

## The following utilities are provided in the FSP for diagnosis purposes:

- Permanent monitoring of levels and frequencies in the instrument
- Selftest
- System error correction

Note: When problems occur, first check, whether any connections (cables, plug-in connections of boards etc.) are damaged or wrongly connected.

## Measuring Equipment and Accessories

| Item | Type of equipment | Specifications recommended | Equipment <br> recommended | R\&S- <br> Order No. | Use |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | DC meter |  | URE | 0350.5315 .02 | Troubleshooting |
| 2 | Spectrum analyzer | Frequency range 0 to 7 GHz | FSEB 20 | 1066.3010 .20 | Troubleshooting |
| 3 | Adapting cable | 1 m long <br> SMP- to SMA connection | - | 1129.8259 .00 | Troubleshooting |
| 4 | Adapting cable | $0,5 \mathrm{~m}$ long <br> SMP-to SMP-connection | - | 1129.8265 .00 | Troubleshooting |
| 5 | Adapter board | Extension 150 mm high <br> 48 -contact, 2mm spacing | - | 1100.3542 .02 | Troubleshooting |

## Troubleshooting Switch-on Problems

- Error: FSP cannot be switched on.

| Action | Possible error causes and further steps |
| :---: | :---: |
| Check power-on switch on the rear $\Downarrow$ | Power switch OFF: Switch on power supply.. |
| Check yellow LED (Stand-by). | LED remains dark: |
| $\Downarrow$ | > Measure voltage at X20.D24 (power supply unit) <br> Rated value: $+12 \mathrm{~V} \pm 1 \mathrm{~V}$ <br> Voltage o.k.: Keyboard or controller faulty. <br> No voltage: Remove IF-Filter or OCXO modules. |
|  | Measure voltage at X20.D24 (power supply unit): <br> Rated value: $+12 \mathrm{~V} \pm 1 \mathrm{~V}$ <br> Correct voltage: Removed module faulty <br> No voltage: <br> Power supply faulty or shortcircuit at 12 V standby. |
| Switch on instrument. Check green LED | LED remains dark: |
| $\Downarrow$ | Measure PWR-ON signal on the power supply X20.B1: < 1V for ON |
|  | Voltage > 1V: Keyboard membrane or controller faulty. |
| Power supply starts, screen remains dark? | Measure voltages on the motherboard, see "Shortcircuit of one or more operating voltages". |

- Error: Short-circuit of one or more operating voltages


## Action

Check on the bottom of the motherboard which of the voltages is short-circuited:

Computer, hard disk, Eeproms :
X20.A7 bis A10: rated value: +5 V2
Detector board :
X20.A5 und X20.A6: rated value +3 V3
Analog boards:
X130.A10: $\quad$ rated value +12 V
X130.A9: $\quad$ rated value +8 V
X130.A8: $\quad$ rated value +6 V
X130.A12: rated value - 12 V

## Possible error causes and further steps

No voltage or considerably low voltage:
Remove the respective boards from the instrument one by one and repeat the measurement.

If the voltage is supplied, then, the error is probably located on the module removed.

Note: The power supply switches off all voltages after a short time in case of a short-circuit. Restart by pressing the Standby/On key.

- Error: Fan does not work.


## Action

Check voltage at connector:
X 35 pins $1+3$ : rated value 12 V

## Troubleshooting Problems with Boot-process

- Error: FSP does not start the measurement application.

Following switch-on, the FSP first boots the computer BIOS. After successful initialization of the computer the Windows NT operating system starts up. Subsequently, the test application is loaded as start-up program. Simultaneously, selftests are performed at various locations and error messages, if any, are output. The messages are disabled with normal operation, but can be enabled for troubleshooting purposes. It is advisable for troubleshooting to connect a keyboard to the keyboard socket.

## Normal action

$>$ Start FSP
Subsequent to switching on the FSP, the following BIOS message is displayed:

Award Modular BIOS v4.51PG, An Energy Star Ally Copyright (C) 1984-97, Award Software, Inc.

R\&S FSP FMR 5 BIOS V1.0-22-1
Rohde\&Schwarz GmbH \& Co KG | Analyzer BIOS V1.0

06/24/99-i430TX-67X-2A59IED4C-00
After the first beep, the computer starts the hardware test and the message:

## , ESC to skip Memory test...

is shortly displayed at the lower edge of the screen.
The test results are usually not displayed. If errors occur during the boot procedure, these messages may indicate defects.
> The messages can be made visible by pressing the "DISP" key following the beep. The keystroke is acknowledged by a second beep.

Then, all messages are displayed.

```
Award Modular BIOS v4.51PG, An Energy Star Ally
Copyright (C) 1984-97, Award Software, Inc.
R&S FSP FMR 5 BIOS V1.0-22-1
    65536K OK (= the result of the
memory test is indicated here)
06/24/99-i430TX-67X-2A59IED4C-00
```

The memory test issues the memory capacity of the front module controller. The basic version of the FSP provides 64 Mbytes. Subsequently, BIOS starts the hardware check and displays all PC boards found.

## Error and error cause

If no result of the memory test is indicated, the memory is defective.

## Normal action

> This procedure may be interrupted using the "BREAK" key on the connected external keyboard, any other key continues the boot process.

Award Modular BIOS v4.51PG, An Energy Star Ally Copyright (C) 1984-97, Award Software, Inc.

R\&S FSP FMR 5 BIOS V1.0-22-1
65536K OK
Award Plug and Play BIOS Extension v1.0A
Copyright (C) 1997, Award Software, Inc.
Detecting HDD Primary Master...IBM-DKLA-24320
(depends on the hard disk installed")
06/24/99-i430TX-67X-2A59IED4C-00

Then, the SETUP is displayed.
> This procedure may also be interrupted using the "BREAK" key.

The contents partly depend on the hardware provided:

## Error and error cause

If this hard disk entry is missing, the hard disk may be faulty

| System Configurations |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CPU Type Co-Prozessor CPU Clock | AMD-K6 3 D <br> Installed $300$ |  | Base Memory Extended Memory Cache Memory |  | $\begin{array}{r} 640 \mathrm{~K} \\ 64512 \mathrm{~K} \\ 512 \mathrm{~K} \end{array}$ |  |
| Diskette Drive A : <br> Diskette Drive B : <br> Hard Disk Drive C : <br> Hard Disk Drive D  | 1.44M, 3.5 in None LRG ,UDMA None | 4327MB | Display Type <br> Serial Port(s) <br> Parallel Port(s) <br> EDO DRAM at Row(s) <br> SDRAM at Row(s) <br> L2 Cache Type |  | $\begin{aligned} & : \text { EGA/VGA } \\ & : \text { 3F8 } \\ & : \text { 3F8 } \\ & : \text { None } \\ & : 02 \\ & : \text { Pipelined Burst } \end{aligned}$ |  |
| PCI device listing.... |  |  |  |  |  |  |
| Bus No. Device No. | Funct No. | Vendor ID | Device ID | Device | Class | IRQ |
| $0 \quad 7$ | 1 | 8086 | 7111 | IDE Co | troller | 14 |
| $0 \quad 7$ | 2 | 8086 | 7112 | Serial B | us Controller | NA |
| $0 \quad 17$ | 0 | 5333 | $8 \mathrm{C01}$ | Display | Controller | NA |
| $0 \quad 17$ | 0 | 10EE | 4013 | Unknow | n PCI Device | 11 |

## Normal action

The PCl hardware test is displayed in the lower half of the screen. All modules found during the test are displayed with their names and PCl device IDs. The Device Class column lists the types of PCl device. The detector board of the FSP is indicated as „Unknown PCI Device".

After this test, the BIOS has been loaded and the operating system is started.

After Windows NT was installed correctly, the following selection menu is displayed:

## OS Loader V4.00

Please select the operating system to start:
Analyzer Firmware
Analyzer Firmware Backup
Use $\uparrow$ and $\downarrow$ to move the highlight to your choice.
Press Enter to choose.
Seconds until highlighted choice will be started automatically: 0
NT Detect V4.0 Checking Hardware ...
Approx. 5 sec later, the following message is displayed:

```
OS Loader V4.01....
```

Press spacebar now to to invoke Hardware Profile/Last Known Good menu
followed by (blue background):
Microsoft (R) Windows NT (TM) Version 4.0 (Build 1381 : Service pack 5) 1 System Processor [64 MB Memory]

The version numbers depend on the used version

## Error and error cause

If the line "Unknown PCI Device" is missing, the detector board was not identified and the measuring application cannot be started. If the remaining PCl devices have all been identified, the detector board will probably contain the error, which is why the board must then be replaced

The message „No System Disk or Disk error ..." at this point indicates that the contents of the hard disk are not correct. Replace the hard disk.

After Windows NT was installed correctly, the following selection menu is displayed:

Normal action

Subsequent to starting the operation system, the application for the FSP is loaded in a start-up program. The program start is initiated automatically and generates a window, which displays information on the start-up procedure.

## Error and error cause

If the operating system on the hard disk has been destroyed and cannot be loaded correctly, Windows NT reacts by a „Bluescreen". This bluescreen contains all essential information on the internal states of the computer which are displayed as follows (by way of example):


Windows NT and the instrument firmware must then be updated from the back-up partition (cf. Chapter 4, Section "Initial Setup/ Update of the Instrument Firmware").


Error and error cause

If a "Bluescreen" is displayed with loading, a cold start may be necessary. Proceed as follows in such a case:
> Cold start (keep point key pressed after first beep until display of the selection menu)
> Firmware update from the backup partition, if cold start does not succeed.(see chapter 4)

If the detector board is not identified, the following message is issued:


## Normal action

When the program has been loaded, the measurement hardware is initialized first. A timer which is controlled by a $32-\mathrm{MHz}$ clock signal is set on the detector board. This test reveals proper functioning of the detector board and the clock oscillator in the FSP (frontend).

After passing the function tests, the analog boards are initialized and the correction data EEPROMs are loaded.

## Error and error cause

If an error occurred on the detector board or the clock is missing, the following message is displayed:

The reference is generated on the frontend module. The 128MHz reference supplied by the frontend is decoupled in the IF filter and distributed to the detector board and the options.

SYSTIFM MITSSACE
DETECTOR:Access failed, check HW component ! OK

| Measurement: | Result: |
| :--- | :--- |
| RF frontend A100, X114: <br> rated value $128 \mathrm{MHz}, 0 \mathrm{dBm}$ <br> $\Downarrow$ | No signal: <br> replace frontend. |
| IF filter A130, X135: <br> rated value $128 \mathrm{MHz}, 0 \mathrm{dBm}$ <br> $\Downarrow$ | No signal: <br> replace IF filter. |
| IF filter A130, X141: <br> rated value 32 MHz, 0 dBm <br> $\Downarrow$ | No signal: <br> replace IF filter. |

If no error occurs with the clock generation, booting can be continued by acknowledging the error message entering "OK"

If no error message or any other information on the error source was issued with booting, the error can only be determined by replacement of the detector board or the front-module controller.

## Troubleshooting - Loading Module EEPROMs

## - Error: Data of modules cannot be read.


#### Abstract

\section*{Normal action}

On booting the instrument all calibration data required must be written into the RAM of the computer. The calibration data of a module are either read from the EEPROM (in case of a cold start from EEPROM only) or from the associated binary file. For each module identified by the software it is checked first the EEPROM can be read.

If reading at the desired address is not possible, the software assumes that the module is not available.


The calibration data are then read from the file pertaining to the module (eg iffilt.bin).

If reading at the address of an optional module is not possible, this module is marked as not available in the module array for storage of the module information.
If the file pertaining to the non-available module does exist, it is assumed that upon the last successful booting the module was available but has been removed meanwhile. The file with the calibration data of the module is erased. Moreover the data collected during the last calibration are invalid and only saved as a backup copy on the hard disk

Error and error cause

For modules that must always be available (eg IF filter) an error message will be output:

## Error reading EEPROM of IF Filter

If error-free reading of the binary file is not possible either, an error message is output again.

Error reading file of IF Filter

If reading at the address of a module is possible but the contents of the data block faulty (eg check sum of header block incorrect), the calibration data of the respective module are read from the associated file. The firmware assumes that the module is available.

Error reading EEPROM of IF Filter

## Normal action

Upon successful reading of the module header from the EEPROM the contents of the module header is entered into the array for storing the module information. The module header read from the EEPROM is compared with the module header of the associated binary file. If the module header can be read from the file and agrees with the header read from the EEPROM it is assumed that the contents of the module EEPROM has already been mapped in the binary file. The calibration data can thus be written from the file to the RAM.

After loading the calibration data from the EEPROMs, the calibration data are loaded from the calibration data files (eg DDC settings for various filters). First the relevant calibration data file is written to the calibration data memory.

Upon successful loading of the calibration data file the latter is compared with its backup copy on the hard disk.

After loading the calibration data from the EEPROMs and files, the data collected during the last calibration are loaded from the 'rdf_cal.bin' file into the calibration data memory. This process takes only place if valid calibration data (and the 'rdf_cal.bin' file) are available.

## Error and error cause

If however the associated file cannot be found or if the module header of the EEPROM differs from that of the file, the total EEPROM contents must be written to the RAM and then saved in the binary file.

Error finding file of IF Filter

If an error occurs upon loading the file into the memory, an error message is output:

Error reading file of DDC Filter

If there are no valid calibration data, the status message "UNCAL " is output informing the user that the instrument is uncalibrated.

## Troubleshooting via Selftest

The selftest is provided for identification of instrument errors and tolerance violations which can not be corrected with self-calibration of the instrument.
All signal paths are connected and the signal is traced via test points. The selftest checks all possible hardware settings which are used for the self-calibration with regard to sufficient setting range including reserves.

## Service Level - Test Following the Entry of a Password

When entering the password, the test result is recorded in detail and in case of a fatal error (such as a failure of the operating voltage), the selftest is not aborted..

All operating functions required in connection with the selftest are offered in the SETUP - SERVICE menu:

> Enter the password 894129 for service level 1 with ENTER PASSWORD.
> Initiate the selftest of the instrument modules using the SELFTEST softkey

While the selftest is running, a message box is displayed, which shows the current test and test result.
> Pressing ENTER ABORT aborts the test run.

All modules are tested one by one and the test result (selftest PASSED or FAILED) is output in the message box


The SELFTEST RESULTS softkey calls a complete list of all test results. If an error occurs, a brief description of the failed test, the module concerned, the valid range and the measurement value are displayed.

| Total Selftest Status: ***FAILED*** |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Date (dd/mm/yyyy) : 10/06/1999 Time: 16:34:47 |  |  |  |  |
| Runtime: 05:59 |  |  |  |  |
| Supply voltages detector |  |  |  |  |
| test description | min | max | result | state |
| +6V | 5.88 | 6.42 | 6.06 | PASSED |
| +8V | 7.84 | 8.96 | 8.56 | PASSED |
| +12V | 11.76 | 12.83 | 12.42 | PASSED |
| -12V | -11.33 | -13.28 | -11.85 | PASSED |
| +28V | 26.62 | 29.39 | 28.34 | PASSED |

## Selftest design and Error Messages

## Overview

The calibration source on the IF-filter module is used as signal source for testing the signal path.

1. Measurement of the operating voltages
a) of the power supply
b) regulated operating voltages on the detector and IF-filter modules
2. Temperature measurement on the IF-filter board
3. Testing the fourfold $\mathrm{D} / \mathrm{A}$ converter on the detector
4. Test of the reference signals on the Standard Frontend (modules 1 and 2 ) and on the IF filter modules
5. Synthesizer test on the frontend module
6. Testing of the signal paths on all boards
7. Test of optional modules

All measurements on the analog boards are independent of the gate arrays on the detector board, since individual A/D converters are provided for them on the analog boards. The interface section in the FPGA of the detector board must function properly to read these A/D converters. This is always tested with switching on the instrument.
The signal path via the gate arrays on the detector board is tested using a known, analog signal at the input of the A/D converter on the detector board. The analog test signal is provided by the preceding analog tests.
Since the operating voltages are measured first, it is ensured that the selftest can be performed correctly. If an operating voltage failed which is not required by the selftest this is correctly signalled in the error list. If, however, all operating voltages are indicated to be faulty, it may well be assumed that the operating voltage for the selftest has failed or the selftest A/D-converter itself is defective.

## Operating Voltages

When an operating voltage fails, the selftest is aborted to avoid subsequent error.
The test is not aborted under service level 1. All subsequent errors are then listed in the result record. Errors which occurred independent of the voltage failure can then be detected, still.
The error message indicates the error source (power supply, IF filter, detector board) and the voltage which failed.

## Normal action

## Power Supply

The voltages of the power supply and the -6 V regulator (dc-dc converter from -12 V to -6 V on the motherboard) are measured at the board connector by means of the selftest $A / D-c o n v e r t e r$ on the detector board.

| Channel | Nominal voltage |
| :--- | :--- |
| 1 | +6 V |
| 2 | +8 V |
| 3 | +12 V |
| 4 | -12 V |
| 5 | +28 V |
| 7 | -6 V |

## Regulated Voltages on the Boards Detector Board

| Channel | Nominal voltage |
| :--- | :--- |
| 6 | -5 V |

## Error and error cause

## FATAL ERROR!

Power supply: DC FAIL +6V.
Selftest aborted.
$>$ If error messages occur, the voltages on the motherboard should be checked. The tolerances given in the column "Tolerance range power supply / voltage regulator" apply in this case. If the voltages adhere to the tolerance limits, the error must be located in the selftest:
$>$ Replace the detector board.

## FATAL ERROR!

Detector: DC FAIL -5V.
Selftest aborted.
> If the preceding tests passed, the detector board has to be replaced.

## Temperature Measurement on IF-Filter

## Normal action

The temperature is measured, first. If the temperature violates the permitted range from $0^{\circ}$ to $70^{\circ} \mathrm{C}$, the following warning is output:

| Channel | Nominal <br> voltage | Designation, <br> name which occurs in the <br> error message |
| :--- | :--- | :--- |
| 74 | -5 V | UREF-5 |
| 77 | $+2,5 \mathrm{~V}$ | UREF+2.5 |
| 76 | $+3,3 \mathrm{~V}$ | +3.3 V |
| 73 | +5 V | +5 V |
| 72 | $+10,6 \mathrm{~V}$ | +10 V |
| 71 | -5 V | -5 V |
| 70 | $-10,6 \mathrm{~V}$ | -10 V |
| 75 | +5 V | +5 VR |

> The IF filter board must be replaced in any case, if an error message occurs which refers to these operating voltages or the temperature (if not plausible).
The voltage of the temperature sensor is used for temperature compensation of the filters. Thus, a faulty temperature sensor may detune the filters such that subsequent errors are likely to occur.

## Checking the 4-fold D/A-converter on the detector board.



FATAL ERROR!
Detector: Pretune DAC FAIL - check DCON and pretune DAC Selftest aborted.
$>$ Replace the detector board

## Testing the Reference Signals on Standard Frontend (Modules1 and 2) and on the IF-Filter Module

Errors detected do not cause abortion of the test. However, the subsequent checking of the signal path in the IF filter and detector boards is skipped, since there is no local oscillator provided to convert the $128-\mathrm{MHz}$ calibration signal to the $20.4-\mathrm{MHz}$ IF required for the tests.

## Normal action

## Reference Signals on the IF Filter Board

Figure 3-5 illustrates the reference signals on the IF-filter board.
The selftest points are emphasized by color. The levels are measured at these points with a permitted tolerance of $\pm 5 \mathrm{~dB}$.
In addition, the level control loop of the calibration signal generator is monitored. If the loop unlocks, the level of the calibration signal is not accurate, even if no error occurs at the other test points.

| Channel | Test |
| :--- | :--- |
| 1 | $128-\mathrm{MHz}$ input level |
| 2 | $10-\mathrm{MHz}$ output level |
| 3 | Calibration signal level |
| 4 | Control voltage of calibration signal |

## 128 MHZ Input level:

The transfer level should be $>-5 \mathrm{dBm}$. It can be rechecked at the output X114 of the frontend.

## 10 MHZ Output level:

This is the reference frequency for synchronizing all oscillators

Error and error cause

## FATAL ERROR!

IF Board: 128 MHz Reference input level low. Selftest aborted
$>$ If this signal is missing, the clock for the detector board is missing, too. If the level is too low, proper functioning cannot be assured.
> Replace Frontend Modul 2, if any error occurs.

## ERROR!

IF Board: 10 MHz Reference output level low, TCXO / OCXO.

If the signal fails, the instrument continues functioning properly, however, the frequency accuracy is violating the tolerance limits.

Option OCXO fitted:
$>$ Check output level of option ( $10 \mathrm{MHz},>-5 \mathrm{dBm}$ ).
If the level is o.k., the IF-filter board is faulty.
> Replace IF-filter board
Option OCXO not fitted:
> Replace IF-filter board

## Normal action

## Calibration signal level:

## Error and error cause

## FATAL ERROR!

IF Board: CAL Signal level out of range for selftest Selftest aborted.

The selftest of the signal path can not be performed with failure of the calibration signal.
> Switch on measurement via the INPUT CAL softkey in the SETUP - SERVICE menu. While attending this menu, the level can be switched over between -30 dBm and 0 dBm using the step keys i $\sqrt{ }$.
> Measure the calibration signal at X142 of the IF-filter board.

## ERROR!

IF Board: CAL Signal level control loop unlocked

As soon as the control voltage violates the tolerance, the level control loop unlocks and the level becomes inaccurate. If the level error is small, the selftest of the signal path can be performed. However, following the calibration of the instrument, the level measuring accuracy will be out of tolerance.
> Prior to replacing the IF-filter board, check, whether the level applied in X134 is between -4 and +6 dBm . The typical level range of the CAL generator is -5 dBm to +8 dBm .
$>$ If the level is outside this range, the Frontend Modul 2 must be replaced.

## Testing the Signal Paths

## Overview of the test sequence

- The internal source for the test signal (CAL signal) has already been tested with testing the reference signals.
- Testing all attenuators.
- Testing the output level of the standard frontend using a level detector at the IF-filter input.
- Testing all signal paths inside the IF filter.
- Testing all (digital) signal paths and the signal processing incl. RAM on the detector board.


## Normal action

## Signal Path via RF Attenuator

It is assumed that the signal path is continuous; an absolute level error of up to 20 dB is permitted. The attenuators are measured in relation to the calibration source, by switching over the latter between 0 dBm and -30 dBm . The $10-\mathrm{dB}, 20-\mathrm{dB}$, $40-\mathrm{dB}$ attenuators are checked to $\pm 3 \mathrm{~dB}$.

| RF-Att | CAL level | Tested attenuator |
| :--- | :--- | :--- |
| 0 | -30 | Reference measurement |
| 30 | 0 | $10 \mathrm{~dB}+20 \mathrm{~dB}$ |
| 10 | -30 | Reference measurement |
| 40 | 0 | 40 dB |

Error and error cause

If there is no measured value in the $\pm 20-\mathrm{dB}$ range, the error is likely to be located in the subsequent signal path. The test does not reveal any information on the RF attenuator. The selftest is continued.

## FATAL ERROR!

RF-Attenuator FAIL.
Selftest aborted.
> If individual measurements, only, violate the tolerances, the RF attenuator is clearly faulty: error message

Important: Since a faulty RF attenuator causes many subsequent errors to occur with the IF-filter test, proper functioning of the attenuator is a must.

## Signal Paths on the IF Filter Board

The RF attenuator is used to provide an appropriate test level. Therefore, a fault in the RF attenuator will entail subsequent errors with the IF filter test.

## Normal action <br> Input Level of IF Filter / Calibration Amplifier (CAL-Amps $1+2$ ) <br> Selftest detector A (see block diagram)

The level applied to the RF input is referred to as mixer level in the following. The RF attenuation is to be set to 0 dB . The input frequency is always 128 MHz.
The input level at X 131 is $8 \mathrm{~dB} \pm 3 \mathrm{~dB}$ higher than the mixer level. With maximum mixer level of -10 dBm the level at X 131 is $-2 \mathrm{dBm} \pm 3 \mathrm{~dB}$.
CAL_Amp2 is provided for frequency response correction. With the input frequency of 128 MHz , the gain of CAL_Amp2 is set to 0 dB . The frequency for the selftest is 128 MHz .
The nominal gain between X131 and X132 is +2 dB .
The level at X 132 is 0 dBm with a mixer level of -10 dBm .
The selftest (A) checks the level to $\pm 5 \mathrm{~dB}$ (User) or $\pm 3 \mathrm{~dB}$ (Service Level 1) after passing the CAL_Amps.

FATAL ERROR!
IF Board: IF input level / CALAMP
Selftest aborted
Possible error causes:

- Signal path interrupted in the frontend.
- Erroneous EEPROM data in the frontend leading to incorrect setting of CAL_Amp1.
- CAL_Amp1 or 2 faulty.

Troubleshooting
> Check the level applied at X131 with mixer level -10 dBm : -2 dBm , production tolerance $\pm$ 3 dB , maximum tolerance permitted $\pm 4.5 \mathrm{~dB}$;
$>$ Replace the frontend, if the deviation exceeds this value

## Normal action

## LC-Filter I and XTAL Filter <br> Selftest detector B (see block diagram)

The level measurement is performed with wide and narrow bandwidths of the LC filter. Subsequently, it is additionally measured via the crystal filter. If the LC filter does not work properly, the measurement of the crystal filter is not performed.

## Error and error cause

If the level adheres to the tolerance, a defective CAL_Amp may have caused the error. The setting ranges of the CAL_Amps are tested during the selftest, later.
The selftest passes under service level 1.
$>$ Note, whether the result file contains any error messages concerning the CAL_Amps. If no CAL_Amp error occurred, the CAL_Amps will be set incorrectly. The EEPROM data in the frontend are obviously incorrect (cf. troubleshooting instructions for the frontend)

## ERROR!

IF Board: LC Filter-1/2 wide
XTAL Filter not tested

## ERROR!

IF Board: LC Filter-1/2 narrow
XTAL Filter not tested

## ERROR!

IF Board: XTAL Filter
> The IF filter board must be replaced in all cases.

## Normal action <br> StepGain (IF Amplifier) Selftest detector C (see block diagram) <br> The 10-dB Step Gain (Step Gain Coarse) and the 0.1 dB Step Gain (Step Gain Fine) are tested. The input level is attenuated in steps of 10 dB by the RF attenuator and amplified by means of the StepGain by the same amount, simultaneously. The level detector C checks to $\pm 6 \mathrm{~dB}$ (user) or $\pm 4$ dB (service level 1).

## Error and error cause

## FATAL ERROR!

IF Board: Step Gain Fine
Selftest aborted
> Test with Step Gain Coarse by-passed ( 0 dB ) and Step Gain Fine set to 0 dB

If an error occurs, Step Gain Fine does not work correctly or the signal path is interrupted.
> Replace the IF-filter board.

## ERROR!

IF Board: Step Gain Coarse
> Testing the amplifier stages.

## ERROR!

IF Board: Step Gain Fine
> Testing the amplifier stages.
Attention: If the RF attenuator test caused output of an error message, Step Gain cannot be tested and an error message must be ignored
> If the RF attenuator test passed without any error, Step Gain is defective.
> Replace the IF-filter board.
However, the selftest can be continued, since it does not require the IF gain.

## Troubleshooting Frontend 1

Depending on the kind of error a few measurements should be performed on the frontend prior to replacing the module:

- IP3 too high
- Signal level too low
- LO feedthrough too high


## - Spurious signals

Depending on the kind of error a few measurements should be performed on the frontend prior to replacing the module.
Very high values with input frequency $0,>-10 \mathrm{dBm}$ with an input attenuation of 0 dB indicate that the mixer does not work properly.

## Action

Measure with diode tester at X101:
rated value: 0.35 V voltage in the forward and reverse directions with a current of 1 mA .

## Error and error cause

Different values in both directions, high-impedance or very low-impedance:
mixer defective:
replace frontend1

## - Signal missing or displayed with incorrect frequency

If the signal is missing or the instrument signals "LOUNL", the conditioning of the 1 st LO is probably not correct. The function of this oscillator requires both, the EEPROM data and the reference frequency of the second module.

## Action

Measure function of the 1st LO in zero span. check signal at X102:
rated value: 3476.4 MHz above the current input frequency (between OHz and 3 GHz ) and the signal level is approx. -5 dBm .

## Error and error cause

The frequency is considerably higher or lower or ithe signal is not stable
frontend 1 defective replace Frontend 1
Contents - Chapter 4 "Software Update/Installing Options"
4 Software Update / Installing Options ..... 4.1
Installation of new FSP Software ..... 4.1
Installing the Options ..... 4.2

This page is left blank intentionally.

## 4 Software Update / Installing Options

This chapter contains information on Software-Update and Installing Options to the FSP. Additional manuals obtained together with a software/firmware update or with subsequently acquired options can be filed here.

## Installation of new FSP Software

The installation of a new firmware version can be performed using the built-in diskette drive. The firmware update kit contains several diskettes.
The installation program is called up in the SETUP menu.
SETUP sidemenu:

| FIRMWARE |
| :--- |
| UPDATE | | The FIRMWARE UPDATE softkey starts the installation program and |
| :--- |
| leads the user through the remaining steps of the update |
| IE/IEEE-bus command: -- |
| Performing the update: |


| Insert diskette 1 into the drive. |
| :--- |
| Call SETUP side menu |
| Start update |

[SETUP][NEXT]
[FIRMWARE UPDATE]

| RESTORE |
| :--- | :--- |
| FIRMWAPE |

## Installing the Options

The following options are available with the FSP:

| Option Audio-Demodulator | FSP-B3 | 1129.6491 .02 |
| :--- | :--- | :---: |
| Option OCXO | FSP-B4 | 1129.6740 .02 |
| Option Tracking Generator | FSP-B9 | 1129.6991 .02 |
| Option External Generator Control | FSP-B10 | 1129.7246 .02 |
| Option LAN Karte | FSP-B16 | 1129.8042 .02 |
| Option Elektronic Attenuator | FSP-B25 | 1129.7746 .02 |

For retrofitting, please note the mounting instructions enclosed with the options.
These mounting instructions can be filed at this place in the service manual and are thus easily available whenever they are required.

## Caution!



Disconnect the instrument from the mains before opening the casing. Also note the safety instructions at the beginning of this manual.

The components used in the instrument are sensitive to electrostatic discharges which is why they are to be dealt with according to the ESD regulations.

When installing hardware options note the following:
$>$ Switch off instrument and pull the mains plug.
$>$ Unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
> After installing the option replace the tube and fasten the rear panel feet again.

## Caution!

When replacing the tube take care not to damage or pull off cables.
$>$ Switch on FSP.
$>$ Install additional software, if supplied, according to the instructions enclosed with the option.
$>$ If an adjustment is required for this option, the appropriate hints are to be found in the installation instructions for the option.

## Contents - Chapter 5 "Documents"

5 Documents ..... 5.1
Shipping of Instrument and Ordering of Spare Parts ..... 5.1
Shipping of Instrument ..... 5.1
Shipping of a Module ..... 5.1
Ordering Spare Parts ..... 5.2
Refurbished Modules ..... 5.2
Taking back Defective Replaced Modules ..... 5.2
Spare Part s ..... 5.3
Available Power Cables ..... 5.3
Spare Part List ..... 5.5
Mechanical Drawings ..... 5.5
Block Circuit Diagram ..... 5.13
Part List ..... 5.13
Figures

## Tables

Table 5-1 List of power cables available ..... 5.3
Table 5-2 List of all FSP part and spare parts ..... 5.7

This page is left blank intentionally.

## 5 Documents

This chapter provides information on the ordering of spare parts and contains the spare part list and the documents for the complete FSP unit.

## Shipping of Instrument and Ordering of Spare Parts

Please contact your Rohde \& Schwarz support center or our spare parts express service if you need service or repair of your equipment or to order spare parts and modules.

The list of the Rohde \& Schwarz representatives and the address of our spare parts express service are provided at the beginning of this service manual.
We require the following information in order to answer your inquiry fast and correctly and to decide whether the warranty still applies for your instrument:

- Instrument model
- Serial number
- Firmware version
- Detailed error description in case of repair
- Contact partner for checkbacks


## Shipping of Instrument

When shipping the instrument, be careful to provide for sufficient mechanical and antistatic protection
$>$ Repack the instrument as it was originally packed when transporting or shipping. The two protective caps for the front and rear panels prevent the control elements and connectors from being damaged. The antistatic packing foil avoids any undesired electrostatic charging to occur.
$>$ If you do not use the original packaging, provide for sufficient padding to prevent the instrument from slipping inside the package. Wrap antistatic packing foil around the instrument to protect it from electrostatic charging.

## Shipping of a Module

When shipping a module, then, also be also careful to provide for sufficient mechanical and antistatical protection
$>$ Ship the module in a sturdy, padded box.
$>$ Wrap the board into antistatic foil.
If the packaging is only antistatic but not conductive, additional conductive packaging is required. The additional packaging is not required if the enclosed packaging is conductive.
Exception: If the module contains a battery, the tightly fitting packaging must always consist of antistatic, non-chargeable material to protect the battery from being discharged.

## Ordering Spare Parts

To deliver replacement parts promptly and correctly we need the following indications:

- Stock number (see component lists in this chapter)
- Designation
- Component number according to component list
- Number of pieces
- Instrument type the replacement part belongs to
- Contact person for possible questions

The stock numbers necessary for ordering replacement parts and modules as well as power cables can be found further down.

## Refurbished Modules

Refurbished modules are an economic alternative for original modules. It should be kept in mind that refurbished modules are not new, but repaired and fully tested parts. They may have traces from use but they are electrically and mechanically equivalent to new modules.
To find out which refurbished modules are available, please refer to your Rohde \& Schwarz representative (or to the central service division, Rohde \& Schwarz Munich).

## Taking back Defective Replaced Modules

Defective modules of the replacement program which can be repaired are taken back within 3 months after delivery of the replaced module. A repurchasing value is credited.
Excluded are parts which can not be repaired, e.g. PCBs that are burnt, broken or damaged by repair attempts, incomplete modules, parts which are heavily damaged mechanically.
The defective parts must be sent back with a returned accompanying document containing the following information:

- Stock number, serial number and designation of the dismounted part,
- Precise description of the error,
- Stock number, serial number and designation of the instrument the part was dismounted from,
- Date of dismounting,
- Name of the technician who exchanged the part.

A returned accompanying document is provided with each replacement module.

## Spare Parts

The stock numbers necessary for ordering replacement parts and modules can be found in the component lists further down.

## Important Note!

When replacing a module please note the safety instructions and the repair instructions given in chapter 3 and at the beginning of this service manual
When shipping a module be careful to provide for sufficient mechanical and antistatical protection.

## Available Power Cables

Table 5-1 List of power cables available

| Stock No. | Earthed-contact connector | Preferably used in |
| :--- | :--- | :--- |
| DS 006.7013 | BS1363: 1967' complying with <br> IEC 83: 1975 standard B2 | Great Britain |
| DS 006.7020 | Type 12 complying with SEV-regulation <br> 1011.1059, standard sheet S 24 507 | Switzerland |
| DS 006.7036 | Type 498/13 complying with <br> US-regulation UL 498, or with IEC 83 | USA/Canada |
| DS 006.7107 | Type SAA3 10 A, 250 V, <br> complying with AS C112-1964 Ap. | Australia |
| DS 0025.2365 | DIN 49 441, 10 A, 250 V, angular <br> DS 49 441, 10 A, 250 V, straight | Europe (except Switzerland) |

This page is left blank intentionally.

## Spare Part List

Mechanical Drawings

This page is left blank intentionally.

## List of FSP parts including spare parts

The FSP is constructed in accordance with R\&S design 2000.
Overall dimension: $\quad \mathrm{W} \times \mathrm{H} \times \mathrm{L}, 372,75 \times 176,50 \times 395,00$
Rackmount: 4E 7/8 T350
Accessories: 19"-Adapter ZZA-411, Stock no. 1096.3283.00
Note: The recommended spare parts are marked $x$ in the like column.
Table 5-2 List of all FSP part and spare parts

| Position | Designation | Stock No. | Number | Electrical designation | Recommended Spare Parts |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Document 1093.4495.01 (FSP Basic Unit) |  |  |  |  |  |
| 10 | Basic Unit | 1093.4537 .02 | 1 S |  |  |
| 15 | Fan | 1093.4614 .00 | 1 S | E1 | x |
| 20 | Attenuator (FSP-3/7) | 1067.7684.00 | 1 S | A40 | x |
| 30 | Attenuator (FSP-13/30) | 1046.5024 .05 | 1 S | A40 | x |
| 40 | Screw with washer assembly M2,5X6 | 0071.5040 .00 | 2 S |  | x |
| 42 | Screw with washer assembly M3X6 | 0071.6847 .00 | 2 S |  |  |
| 50 | Key probe board | 1093.7742.02 | 1 S | A80 | x |
| 55 | DIN965-M2,5X6-A4-PA | 0852.3608 .00 | 3 S |  |  |
| 60 | Subassembly plate | 1093.4643 .00 | 1 S |  |  |
| 70 | DIN965-M2,5X6-A4-PA | 0852.3608 .00 | 4 S |  |  |
| 80 | Adhesive foil 30X20 SW | 1093.9051 .00 | 3 S |  |  |
| 90 | Cover RD15,9 | 0009.9200.00 | 1 S |  |  |
| 92 | Frontend | 1093.5491 .06 | 1 S | A100 | x |
| 100 | Frontend | 1093.5491 .03 | 1 S | A100 | x |
| 110 | Detector board | 1093.6998.02 | 1 S | A120 | X |
| 120 | IF-Filter | 1093.7242.02 | 1 S | A130 | X |
| 130 | Converter Unit ( 7 GHz ) | 1093.7994.02 | 1 S | A160 | X |
| 135 | MW-Converter Unit (13 GHz) | 1093.8249.13 | 1 S | A160 | x |
| 140 | MW-Converter Unit (30 GHz) | 1093.8249 .30 | 1 S | A160 | X |
| 142 | Screw with washer assembly M2,5X6 | 0071.5040 .00 | 4 S |  |  |


| Position | Designation | Stock No. | Number | Electrical designation | Recommended Spare Parts |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 150 | Diplexer ( 30 GHz ) | 1108.8508.30 | 1 S | A230 | x |
| 160 | Air cover | 1093.5285 .00 | 1 S |  |  |
| 170 | Rear panel labelling | 1093.4650.00 | 1 S |  |  |
| 180 | Screw with washer assembly M2,5X6 | 0071.5040 .00 | 5 S |  |  |
| 190 | Cover 9-pin SUB-D | 1093.8990 .00 | 1 S |  |  |
| 200 | Cover 25-pin SUB-D | 1093.9000.00 | 3 S |  |  |
| 210 | Cover RD11,1/9,9 | 0009.9217.00 | 4 S |  |  |
| 220 | Cover f. IEC-Bus (metal) | 1050.9272.00 | 1 S |  |  |
| 225 | Cover f. IEC-BUS | 0852.0450.00 | 1 S |  |  |
| 230 | Screw with washer assembly M3X6 | 0071.6847 .00 | 2 S |  |  |
| 235 | Cover f.. LAN-connector | 0852.0467.00 | 1 S |  |  |
| 240 | Instrument top cover | 1093.4637 .00 | 1 S |  |  |
| 250 | Screw with washer assembly M2,5X6 | 0071.5040.00 | 2 S |  |  |
| 260 | DIN965-M2,5X6-A4-PA | 0852.3614 .00 | 2 S |  |  |
| 270 | Printed front panel 3 GHz | 1093.4595 .00 | 1 S |  |  |
| 280 | Printed front panel 7 GHz | 1093.4689.00 | 1 S |  |  |
| 285 | Printed front panel 13 GHz | 1093.5004.00 | 1 S |  |  |
| 290 | Printed front panel 30 GHz | 1093.4695 .00 | 1 S |  |  |
| 295 | RF-cable W1 7GHz | 1093.4872 .00 | 1 S | W1 | x |
| 305 | Cable clamp RD4 BR6 | 0080.3660.00 | 1 S |  |  |
| 310 | RF-cable W1 13 GHz | 1093.5010 .00 | 1 S | W1 | x |
| 315 | RF-cable W1 30GHz | 1093.5027.00 | 1 S | W1 | x |
| 316 | TESTPORT ADAPTER | 1021.0493.00 | 1 S |  |  |
| 330 | Assembly plate | 1093.4750.00 | 1 S |  |  |
| 340 | Assembly plate | 1093.4772.00 | 1 S |  |  |
| 350 | DIN965-M2,5X6-A4-PA | 0852.3614.00 | 4 S |  |  |
| 395 | Adhesive foil VDE/CSA | 1093.5233.00 | 1 S |  |  |
| 400 | Adhesive foil DRM50 grey | 1093.9068.00 | 1 S |  |  |
| 410 | BW2-tube-FSP 4E 7/8 T350 | 1093.5356.00 | 1 S |  |  |


| Position | Designation | Stock No. | Number | Electrical designation | Recommended Spare Parts |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 420 | BW2-front panel handle 4E | 1096.1480 .00 | 2 S |  |  |
| 430 | BW2-M4X14 | 1096.4909.00 | 4 S |  |  |
| 440 | BW2-instrument foot | 1096.2506.00 | 4 S |  |  |
| 450 | BW2-rear panel foot 50MM | 1096.2493 .00 | 4 S |  |  |
| 455 | BW2-foil f. rear panel foot | 1096.2435 .00 | 4 S |  |  |
| Drawing 1093.4537.00 (Digital Unit) |  |  |  |  |  |
| 500 | Instrument frame | 1093.4543 .00 | 1 S |  |  |
| 510 | Motherboard | 1093.7494.02 | 1 S | A10 | x |
| 520 | Screw with washer assembly M2,5X6 | 0071.5040.00 | 5 S |  |  |
| 530 | Locking bolt M3 | 0009.6501.00 | 4 S |  |  |
| 540 | Spacer for D-Submin. | 1093.9180 .00 | 2 S |  |  |
| 550 | Power supply unit 230W UL/CSA | 1091.2320 .00 | 1 S | A20 | x |
| 560 | Screw with washer assembly M2,5X6 | 0071.5040 .00 | 10 S |  |  |
| 570 | Frontmodul controller 5 with BIOS | 1091.2489.00 | 1 S | A90 | x |
| 590 | Screw with washer assembly M2,5X6 | 0071.5040.00 | 10 S |  |  |
| 600 | Display unit | 1093.4708.02 | 1 S |  |  |
| 610 | DIN965-M2,5X6-A4-PA | 0852.3614.00 | 1 S |  |  |
| 620 | Keyboard frame FSP | 1093.4808.00 | 1 S |  |  |
| 630 | Keyboard mat FSP | 1093.6575.00 | 1 S |  | x |
| 640 | Keyboard membrane FSP | 1093.6581 .00 | 1 S |  | x |
| 650 | Rotary knob RD28 ACHS-RD6 | 0852.1086.00 | 1 S |  |  |
| 660 | DIN965-M2X6-A4-PA | 0852.3520.00 | 10 |  |  |
| 670 | 3,5" Floppy drive slim | 0048.6638.00 | 1 S | A30 | x |
| 680 | Floppy bracket | 1093.4620.00 | 1 S |  |  |
| 690 | Fley strip conn.26P.R=1 | 1091.2066.00 | 1 S | W300 |  |
| 700 | Screw with washer assembly M2,5X6 | 0071.5040.00 | 5 S |  |  |
| 710 | Harddisk with firmware | 1093.5533.00 | 1 S | A60 | x |
| 720 | Ribbon cable | 1091.0240.00 | 1 S | W11 |  |
| 730 | Disk bracket | 1093.4837.00 | 1 S |  |  |


| Position | Designation | Stock No. | Number | Electrical <br> designation | Recommended <br> Spare Parts |
| :---: | :--- | :--- | :---: | :---: | :---: |
| 740 | DIN965-M2,5X6-A4-PA | 0852.3614 .00 | 2 S |  |  |
| 750 | DIN965-M3X6-A4-PA | 0396.8023 .00 | 4 S |  |  |
| 775 | Lithium batterie | 0565.1687 .00 | 1 |  |  |

Drawing 1093.4708.01 (Display Unit)

| 800 | Assembly tray | 1093.4795 .00 | 1 S |  |  |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 810 | Shielded filter plate | 1091.2014 .00 | 1 S |  | x |
| 820 | RF spring (177) | 1069.3011 .00 | 2 S |  |  |
| 830 | RF spring (137) | 1069.3105 .00 | 2 S |  |  |
| 840 | Plate holder | 0852.0844 .00 | 4 S |  |  |
| 850 | DIN965-M2X4-A4-PA | 0852.3508 .00 | 4 S |  |  |
| 860 | Dust sealing | 1093.5279 .00 | 1 S |  |  |
| 870 | CXA-L0605-VJL DC-AC converter | 0048.6996 .00 | 1 S | T 10 | x |
| 880 | DIN7985-M2X10-A4-PA | 0396.8175 .00 | 2 S |  |  |
| 890 | DIN125-A2,2-HP | 0049.7396 .00 | 2 S |  |  |
| 900 | Converter cable L=250 | 1091.0928 .00 | 1 S | W100 | x |
| 910 | Spin wheel | 0852.1170 .00 | 1 S | B10 |  |
| 920 | TFT 640x480x3 Color-LCD | 0048.6980 .00 | 1 S | A80 | x |
| 930 | Screw with washer assembly M2,5X6 | 0071.5040 .00 | 4 S |  |  |
| 940 | Display connector | 1091.0911 .00 | 1 S | W80 | $\times$ |
| 950 | Screw with washer assembly M2,5X6 | 0071.5040 .00 | 2 S |  |  |
| 9 |  |  |  |  |  |

Drawing 1129.7998.02 (Option FSP-B1)

| 10 | Ruggedized foot set 4E 7/8 | 1096.5963 .00 | 1 S |  |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 20 | BW2-Cover FSP 4E 7/8 | 1093.4714 .00 | 1 S |  |  |
| 30 | DIN934-M4-A4 | 0016.4400 .00 | 2 S |  |  |
| 40 | DIN6797-A4,3-A2 | 0016.2837 .00 | 2 S |  |  |
| Drawing 1129.6491.02 (Option FSP-B3) | 1093.7620 .02 | 1 S | A 190 | x |  |
| 1000 | Demodulator | 1129.6504 .00 | 1 S | W 13 |  |
| 1010 | RF-cable W13 | 1129.6510 .00 | 1 S | B 1 | x |
| 1020 | Loudspeaker |  |  |  |  |


| Position | Designation | Stock No. | Number | Electrical designation | Recommended Spare Parts |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1030 | Loudspeaker support spring | 1096.2512 .00 | 1 S |  |  |
| 1040 | Vol./Phones board | 1093.7094.02 | 1 S | A191 | x |
| 1050 | Retaining bracket Probe/Code | 1093.4766.00 | 1 S |  |  |
| 1055 | Screw with washer assembly M $2,5 \mathrm{X} 6$ | 0071.5040 .00 | 1 S |  |  |
| 1060 | DIN965-M2,5X6-A4-PA | 0852.3614 .00 | 3 S |  |  |
| 1070 | Rotary knob RD9,5ACHS-RD4T-GR | 0852.1111 .00 | 1 S |  |  |
| 1090 | Mounting instruction / drawing | 1129.6540 .00 | 1 S |  |  |
| Drawing 1129.6740.02 (Option FSP-B4) |  |  |  |  |  |
| 1100 | OcXO | 1093.7871.02 | 1 S | A200 | x |
| $\begin{aligned} & 1120 \\ & 1140 \end{aligned}$ | RF-cable W14 <br> Mounting instruction / drawing | $\begin{aligned} & 1129.6756 .00 \\ & 1129.6791 .00 \end{aligned}$ | $\begin{aligned} & 1 \mathrm{~S} \\ & 1 \mathrm{~S} \end{aligned}$ | W14 |  |
| Drawing 1129.6991.02 (Option FSP-B9) |  |  |  |  |  |
| 1500 | TRACKING GENERATOR | 1093.7371.02 | 1 S | A170 | x |
| 1510 | RF-cable L W16 | 1129.7000 .00 | 1 S | W16 |  |
| 1520 | RF-cable W17 | 1129.7017 .00 | 1 S | W17 |  |
| 1530 | RF-cable W18 | 1129.7023 .00 | 1 S | W18 |  |
| 1540 | RF-cable W19 (FSP-3) | 1129.7030 .00 | 1 S | W19 |  |
| 1550 | RF-cable W19 (FSP-7/13/30N) | 1129.7075 .00 | 1 S | W19 |  |
| 1560 | RF-cable W20 | 1129.7046 .00 | 1 S | W20 | x |
| 1561 | Bracket RD 4 BR 6 | 0080.3660.00 | 1 S |  |  |
| 1565 | Assembly plate | 1093.4750.00 | 1 S |  |  |
| 1566 | DIN965-M2,5X6-A4-PA | 0852.3614.00 | 4 S |  |  |
| 1590 | Mounting instruction / drawing | 1129.7069.00 | 1 S |  |  |
| Drawing 1129.7246.02 (Option FSP-B10) |  |  |  |  |  |
| 1600 | EXT. GEN. CONTROL | 1093.8590.02 | 1 S | A210 | x |
| 1610 | IEC-BUS Cable W21 | 1129.7252 .00 | 1 S | W21 | x |
| 1612 | DIN125-A3,2-A4 | 0082.4670.00 | 2 S |  |  |
| 1614 | DIN137-A3-A2 | 0005.0296.00 | 2 S |  |  |
| 1620 | Aux control cable W22 | 1129.7269.00 | 1 S | W22 | x |


| Position | Designation | Stock No. | Number | Electrical designation | Recommended Spare Parts |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1622 | Locking bolt M3 | 0009.6501.00 | 2 S |  |  |
| 1624 | DIN137-A3-A2 | 0005.0296.00 | 2 S |  |  |
| 1626 | DIN934-M3-A4 | 0016.4398 .00 | 2 S |  |  |
| 1690 | Mounting instruction / drawing | 1129.7298 .00 | 1 S |  |  |
| Drawing 1129.8042.02 (Option FSP-B16) |  |  |  |  |  |
| 1240 | LAN-Interface COMPACT-PCI | 1093.9080.00 | 1 S | A220 | x |
| 1250 | Cable 2XRJ45 ST/ST 8P | 1066.1899.00 | 1 S | W32 |  |
| 1260 | Cable-Feedthrough 10X17X6,8 | 0099.1433 .00 | 2 S |  |  |
| 1270 | Adapter 8P.GER | 1093.9122 .00 | 1 S | X220 | x |
| 1290 | Assembly plate | 1129.8065 .00 | 1 S |  |  |
| 1300 | Screw with washer assembly M $2,5 \mathrm{X} 6$ | 0071.5040.00 | 2 S |  |  |
| 1310 | Cable clamp BI.RD 1 BIS 25 B2 | 0015.9038.00 | 2 S |  |  |
| 1320 | Mounting instruction / drawing | 1129.8071 .00 | 1 S |  |  |
| Drawing 1129.7746.02 (Option FSP-B25) |  |  |  |  |  |
| 1400 | Attenuator (electronic) | 1108.7230.02 | 1 S | A50 | x |
| 1410 | Ribbon cable 10POL | 1129.7823 .00 | 1 S | W50 |  |
| 1420 | RF-cable W29 | 1129.7752 .00 | 1 S | W27 |  |
| 1430 | RF-cable W28 (FSP-3) | 1129.7769 .00 | 1 S | W28 |  |
| 1440 | RF-cable W28 (FSP-7/13/30) | 1129.7775 .00 | 1 S | W28 |  |
| 1460 | Screw with washer assembly M $2,5 \times 6$ | 0071.5040.00 | 4 S |  |  |
| 1490 | Mounting instruction / drawing | 1129.7800 .00 | 1 S |  |  |

## ROHDE\&SCHWARZ

## Block Circuit Diagram

## Part List


[^0]:    - [ MKR $\Rightarrow$ : MIN PEAK ]

